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Basics of quantum algorithms



Information stored in qubits instead of prbits or bits

I Deterministic algorithms use bits. n bits can be in one of 2n

di↵erent configurations:

(b0, b1, . . . , b2n�1) (1)

where there is a unique i with bi = 1 and bj = 0 for all j 6= i .
I Randomized algorithms use probabilistic bits (prbits). n prbits

can be in a probabilistic mixture of 2
n
di↵erent configurations:

(p0, p1, . . . , p2n�1) (2)

where pi 2 R, pi � 0, and
P2n�1

i=0 pi = 1

I Quantum algorithms use quantum bits (qubits). n qubits can

be in a quantum superposition of 2
n
di↵erent configurations:

(↵0,↵1, . . . ,↵2n�1) $

2n�1X

i=0

↵i |ii (3)

where ↵i 2 C and
P2n�1

i=0 |↵|2 = 1. ↵i are called

“amplitudes”.



Computation by unitary matrices instead of stochastic or

permutation matrices

I Deterministic algorithms (made reversible) on n bits compute

using permutation matrices P 2 {0, 1}2
n⇥2n

. For example, on

a single bit, the NOT gate corresponds to the matrix

P =

✓
0 1

1 0

◆
. (4)

I Randomized algorithms on n prbits compute using stochastic

matrices S 2 R2n⇥2n
where the columns sum to 1 and all

entries are � 0.

I Quantum algorithms on n qubits compute using unitary

matrices U 2 C2n⇥2n
where U†U = I = UU†

.



Output with probabilities equal to norm squared of the

amplitudes

At the end of the computation:

I Deterministic algorithms are in a state (b0, . . . , b2n�1) and

they output the bitstring (corresponding to)

i 2 {0, . . . , 2n � 1} with bi = 1. (There is a unique such i .)

I Randomized algorithms are in a state (p0, p1, . . . , p2n�1) and

they output a bitstring i 2 {0, . . . , 2n � 1} with probability pi .

I Quantum algorithms are in a state (↵0,↵1, . . . ,↵2n�1),

equivalently
2n�1X

i=0

↵i |ii , (5)

and they output a bitstring i 2 {0, . . . , 2n � 1} with

probability |↵i |
2
.



Grover’s quantum search algorithm

Problem: given “query access” to an unknown n-bit string
x 2 {0, 1}n with exactly one i such that xi = 1; how many queries

is necessary and su�cient to find i with high probability?

I Classically (deterministic or randomized), queries are of the

form i 7! xi , and it can be seen that at least ⌦(n) such
queries are necessary and su�cient to solve the problem.

I Quantumly, queries are to the unitary matrix Ox 2 C22n⇥22n
:

Ox : Cn
⌦ C2

! Cn
⌦ C2

|ii ⌦ |bi 7! |ii ⌦ |b � xi i ,
(6)

where ⌦ denotes vector (space) tensor product. This means

we can query xi in superposition over positions i . Grover’s
algorithm uses O(

p
n) queries to Ox to solve the problem.

Matches lower bound of ⌦(
p
n).



More on querying in superposition

From the previous slide:

Ox : Cn
⌦ C2

! Cn
⌦ C2

|ii ⌦ |bi 7! |ii ⌦ |b � xi i ,
(7)

usually the ⌦ is omitted. Can do the following:

I Query in superposition. Create the state
P

n

i=1 ↵i |ii |0i
without queries to Ox , and then query Ox to map
P

n

i=1 ↵i |ii |0i
Ox
7�!

P
n

i=1 ↵i |ii |xi i.

I If we set ↵j = 1 for some j and ↵i = 0 for all i 6= j , then the

above map is |ji |0i 7! |ji |xji, i.e. same as a classical query!



Multi-armed bandits and our results



The best-arm identification problem in multi-armed bandits

Setting: Bernoulli multi-armed bandit with n arms where arm i has
probability pi of giving a reward of 1 and probability 1� pi of
giving no reward (reward of 0).

Problem: given query access to the multi-armed bandit, how many

queries is necessary and su�cient to find the arm with highest pi
(aka best arm) with high probability?

I Classically, queries are reward samples from the arms.

I Quantumly, queries are to the quantum bandit oracle:

O : Cn
⌦ C2

⌦ Cm
! Cn

⌦ C2
⌦ Cm

|ii |0i |0i 7! |ii (
p
pi |1i |vi i+

p
1� pi |0i |ui i).

(8)

This means we can query the multi-armed bandit in

superposition over arms.



Result: quantum gives quadratic speedup in query

complexity

Suppose that p1 > p2 � p3 � · · · � pn.

I Classically: necessary and su�cient to use on the order of

about

H :=

nX

i=2

1

(p1 � pi )2
(9)

reward samples to identify the best arm.

I Quantumly (our result): necessary and su�cient to use on the

order of about vuut
nX

i=2

1

(p1 � pi )2
=

p

H (10)

queries to the quantum bandit oracle to identify the best arm.



Brief overview of techniques

Quantum algorithm. In the case that we know p1, we can mark

those is with pi smaller than p1 using about ti := 1/(p1 � pi )
queries by a well-known quantum technique called amplitude

estimation. We can then use another quantum technique, called

variable time amplitude amplification, on top of the marking

algorithm, to amplify the unmarked i , i.e. i = 1, so that it is

output with high probability. This takes

q
t22 + t23 + · · ·+ t2n

queries
1
. If we don’t know p1, we first locate it by binary search.

Quantum lower bound. For ⌘ ⇡ p1 � p2, can show the following

MAB instances require ⌦(
p
H) queries to distinguish

p1, p2, p3, . . . , pn (11)

p1, p1 + ⌘, p3, . . . , pn (12)

. . . (13)

p1, p2, p3, . . . , p1 + ⌘ (14)

1Ambainis 2012.



Open questions



Open questions

Thank you for your attention, here are our open problems.

1. Can we improve the e�ciency of our quantum algorithm. In

particular, can we remove a factor of n from inside the logs?

2. Can we construct quantum algorithms with favorable regret?

Actually, we have found it di�cult to formulate this problem

in the quantum setting.

3. Can we construct fast quantum algorithms for Markov decision

processes? (This is the topic of my summer internship.)

Daochen Wang


	Basics of quantum algorithms
	Multi-armed bandits and our results
	Open questions

