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The power of quantum computers

Using carefully designed interference between different
computational paths, quantum computers can solve some problems
dramatically faster than classical computers.

I Some problems admit polynomial quantum speedup:
Unstructured search, spatial search, formula evaluation, element

distinctness, graph connectivity, semi-definite programming, ...

I Other problems admit super-polynomial quantum speedup:
Period finding, factoring, discrete log, Pell’s equation, quantum

simulation, quantum linear algebra, quantum differential equations, ...

Why? We address this question through the lens of symmetry.



Query complexity measures quantum speedup
Let f : D ⊂ {0, 1}n → {0, 1} be a known function.

I How many positions of input x ∈ D do you need to query to
compute f (x) with high probability in the worst case?

I Answer denoted R(f ) and Q(f ) in the classical and quantum
cases respectively. Quantumly, can query x in superposition.

I We want to know when R(f ) = Q(f )ω(1) (large speedup) and
when R(f ) = Q(f )O(1) (small speedup).

I Interesting facts:

1. Small Grover speedup: f = OR with D := {0, 1}n has
R(OR) = Θ(n) and Q(OR) = Θ(

√
n).

2. D is very important! For example, R(OR) = Q(OR) = 0 if
D = {0, 1}n − {0n}. In fact, for any f , when D = {0, 1}n,
there can only be small speedups1.

3. Large speedups exist. For example, Simon (1997) exhibited an
f with R(f ) = Θ(

√
n) and Q(f ) = Θ(log(n)).

1Beals, Buhrman, Cleve, Mosca, and de Wolf (2001); Aaronson,
Ben-David, Kothari, and Tal (2020).



Characterization of quantum speedups for
symmetric functions: “must be small for

adjacency matrix hypergraph-based symmetries,
else can be large”



Symmetric functions

Definition
Let f : D ⊂ {0, 1}n → {0, 1} be a function. f is symmetric under
a permutation group G on {1, . . . , n} if, for all π ∈ G , we have:

1. x = (x1, . . . , xn) ∈ D =⇒ x ◦ π := (xπ(1), . . . , xπ(n)) ∈ D.

2. f (x) = f (x ◦ π) for all x ∈ D.

Examples:

I f = OR : {000, 100, 010, 001} ⊂ {0, 1}3 → {0, 1} is
symmetric under G = S3 (all permutations of {1, 2, 3}).

I f = a graph property in the adjacency matrix model is
symmetric under G = graph isomorphisms.



Adjacency matrix model of graphs

In the adjacency matrix model, a (simple) graph on vertex set
[n] := {1, . . . , n} is modelled by a m :=

(n
2

)
-bit string

For example, let n = 4, so m = 6, under the index-edge
identification:

1↔ {1, 2}, 2↔ {1, 3}, 3↔ {1, 4},
4↔ {2, 3}, 5↔ {2, 4}, 6↔ {3, 4},

(1)

the left graph is 100111 and the right graph is 110101.
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A graph property in the adjacency matrix model is a function on
such bitstrings that is invariant under graph isomorphism.



Near-complete characterization theorem
Prior art2: small quantum speedup for f symmetric under G = Sn.
Our theorem:

2Aaronson and Ambainis (2009); Chailloux (2018).



Chailloux’s proof (2018)
Suppose f : D ⊂ {0, 1}n → {0, 1} is invariant under Sn.

Given an algorithm for computing f , if we replace the input x ∈ D
by x ◦ π := (xπ(1), . . . , xπ(n)) for a random π ∈ Sn, then the
algorithm still correctly computes f .

Main idea: replace π by a random range-r function, α : [n]→ [n]
with |α([n])| = r .

If a quantum algorithm distinguishes x ◦ π from x ◦ α, then it
distinguishes π from α. (If it cannot distinguish π from α then it
cannot distinguish x ◦ π from x ◦ α.)

Theorem [Zhandry (2015)]. Distinguishing a random range-r
function from a random permutation in Sn requires Ω(r1/3)
quantum queries.

Taking r = Q(f )3, we see that a Q(f )-query quantum algorithm
cannot distinguish x ◦ π from x ◦ α. But a quantum algorithm on
x ◦ α can be simulated with r classical queries.



Adjacency matrix graph symmetries

Suppose we need Ω(r1/c) quantum queries to distinguish a random
range-r function from a random π ∈ G . (We say such a G is
well-shuffling.)

Then by Chailloux’s argument, R(f ) = O(Q(f )c).

For graph symmetries, consider G = S
(2)
n on [n2], consisting of

mappings (u, v) ∈ [n2] 7→ (π(u), π(v)) for π ∈ Sn.

If we can distinguish a random π ∈ S
(2)
n from a random range-r2

function on [n2] with Q quantum queries, then we can distinguish
a random π ∈ Sn from a random range-r function on [n] with 2Q

quantum queries. So 2Q = Ω(r1/3) = Ω((r2)1/6), so S
(2)
n is

well-shuffling with c = 6.

Graph symmetries have some additional constraints, but they are
only “more well-shuffling”.



There exists an exponential quantum speedup for
graph property testing in the adjacency list model



Adjacency list model of graphs
In the adjacency list model, a (simple) graph of bounded degree d
on vertex set [n] is modelled by a n × d matrix – which can then
be collapsed into a length-(nd) string.

For example, the graph (seen before):

1

2 3

4

with n = 4, d = 3 can be modelled by

x =


2 ∗ ∗
1 3 4
4 2 ∗
2 3 ∗

 (2)



The glued trees problem
Given access to the adjacency list of a glued trees graph and the
label of ENTRANCE, a quantum algorithm can find the label of
EXIT exponentially faster than any classical algorithm3.

3Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman (2003).



Use glued trees to construct a property testing problem
with exponential quantum speedup

The graph property:

1. Can classically test the entire
glued-trees if we mark the leaves
of the two trees that are glued.

2. Mark the leaves in a way that
can only be read efficiently by a
quantum computer but not a
classical computer – use further
copies of the glued-trees problem.

where
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In particular: quantum speedups of computing graph
properties depend significantly on the input model!

Adjacency list: an exponential quantum speedup exists even
for graph property testing.

Adjacency matrix: there can be at most polynomial
quantum speedup, R(f ) = O(Q(f )6).

These results resolve an open question of Ambainis, Childs,
and Liu (2010) and Montanaro and de Wolf (2013).



Outlook

Thank you for your attention! Here are a few of the interesting
questions remaining from our work:

1. We showed R(f ) = O(Q(f )3p) for p-uniform hypergraph
properties f in the adjacency matrix model as part of our
characterization theorem. How tight is this?

2. Can we complete our characterization theorem?

3. Is there a useful graph property testing problem in the
adjacency list model with super-polynomial quantum speedup?
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