Symmetries, graph properties, and
quantum speedups

Daochen Wang
University of Maryland

Joint work with Shalev Ben-David, Andrew M. Childs,
Andrés Gilyén, William Kretschmer, and Supartha Podder
arXiv: 2006.12760

Microsoft Research
6th July 2020

https://arxiv.org/abs/2006.12760

Outline

Introduction

Symmetries of graphs in adjacency matrix model

Symmetries of primitive permutation groups

Adjacency list model

Open problems

Introduction

Query complexity (1/4)

The first problem. Let f: {0,1}" — {0,1} be known in advance.
Given unknown input x € {0,1}" to f. How many bits of x do you
need to deterministically read (aka query) to compute f?

Examples:
1. f =OR, i.e. f(x) =1if and only if at least one bit of x is a 1.
2. f(x) = x1.

3. f(x) = (x1 Ax2 A x3) V x3.

The answer is known as the deterministic query complexity of f,
denoted D(f). If we can use random-ness and only require the
output to be correct with probability at least 2/3, then the answer
is known as the randomized query complexity of f, denoted R(f).

Query complexity (2/4)

If we can use quantum-ness and only require the output to be
correct with probability at least 2/3, then the answer is known as
the quantum query complexity of f, denoted Q(f).

More precisely, quantum-ness means we can do quantum
computations and have access to the quantum oracle

O, :C"®C? > C"wC?
[/} @ |b) + |i) @ |bD x;).

This means we can query the bits of x in superposition.

Fact: Q(f) < R(f) < D(F).

Query complexity (3/4)

More generally, can consider f : D C " — {0,1}. X is known as
the input alphabet, previously ¥ = {0,1}. The domain D is known
as the promise on the input x € £". When D =Y, f is said to be
total, else it is said to be partial. The query complexity of f can
depend significantly on the promise.

Examples:
1. f =0R and ¥ = {0, 1}, but now D = {07}, i.e. promised
input is not 0", the all-zeros bitstring.
2. When f is total and ¥ = {0, 1}, then?
R(f) < D(f) = O(Q(f)*). In particular, no exponential
speedups.

(It may help to think of x = O(y) as x < y and x = Q(y) as
x >y because we don't care about constants.)

! Aaronson, Ben-David, Kothari, and Tal (2020).

Query complexity (4/4)

Still consider f: D C X" — {0,1}. Input x € D C X", x can be
viewed as a function from [n] to X.

Collision problem. ¥ = [n] .= {1,2,...,n}. Promised that x is
either 1-to-1 (f = 0) or (k > 1)-to-1 (f =1).

Q(f) = ©((n/k)/3); R(f) = ©((n/k)*/?). Polynomial speedup.
Simon’s problem. ¥ = [n], where n = 2% View the n indices of x

as labelled by {0,1}. Promised that either x is 1-to-1 (f = 0) or
there exists an a # 0% such that x; = Xq, for all i (f = 1).

Q(f) = ©(k = log, n); R(f) = ©(y/n). Exponential speedup!

Models of graphs: adjacency matrix

In the adjacency matrix model, a (simple) graph on vertex set

[n] = {1,...,n} is modelled by a (5)-bit string, where the indices
are first identified with edges and the bit-value at an index
indicates whether that edge is present.

For example, under the following index-edge identification:

1 {1,2}, 2 {1,3}, 3¢ {1,4},
4+ {2,3}, 5+ {2,4}, 6 < {3,4},

the graph below with n = 4 is modelled by x = 100111.

2 3

Models of graphs: adjacency list
In the adjacency list model, a (simple) graph of bounded degree d

on vertex set [n] is modelled by a n x d matrix — which can then
be collapsed into a length-(nd) string.

For example, the graph (same as before):

2 3

with n = 4,d = 3 can be modelled by
2

or X =

N B =

W NN W
¥ ¥ %
WN PN
N B =X
¥ ¥ W %

among other possibilities.

Graph properties

A graph property f is a function from a set of graphs (specified
either in the adjacency matrix or list model) to {0,1} that is
invariant under graph isomorphisms, i.e. vertex relabellings.

Examples:
1. Having a triangle or not is a graph property.

2. f must evaluate to the same value on the following two
isomorphic graphs. Note that the graphs are not the same,
e.g. in the adjacency matrix model, the left one is x = 100111
but the right one is x = 111010 (under the same index-edge
identification as before).

2 3 1 4

4

Symmetries of graphs in adjacency matrix model

Symmetric functions

Definition
A permutation group G of [n] is a set of permutations of [n] that
forms a group. To say a function f : D C X" — {0,1} is
symmetric under G means, for all 7 € G:
1. If x ¢ D then xom € D, where x o € X" is defined by
(x 0 m)i = Xn(i)-
2. f(x) =f(xom) for all x € D. (Note that the RHS makes
sense by the first condition.)

Main example. f is a graph property, ¥ = {0,1}, and G are
graph symmetries denoted S2, i.e. the set of permutations of

[n = (3)] induced by the S, permutations of vertex set [m]. More
generally, f is a p-uniform hypergraph property and G = Sf. (Fix
p = 2 if hypergraphs are unfamiliar.)

Permutation groups and small-range strings

A permutation group G of [n] can be identified with a set of
length-n strings in a natural way. For example, the permutation of
[3] that maps

1—3, 2—1 3—2 (4)

is identified with the 3-bit string “312".

Let 1 < r < n be an integer. Consider another subset of length-n
strings D, , defined by having at most r distinct entries in [n]. For

example:
D;» = {111,222, 333,

112,121,211, 221,212, 122,
113,131,311, 331, 313, 133,
223,232,322, 332, 323,233}

(5)

Dy, is known as a set of small-range strings (with range r). Note
that D, , is disjoint from G, i.e. D,, N G = 0.

Well-shuffling permutation groups

We say a permutation group is well-shuffling if it is hard for a
quantum computer to distinguish it from small-range strings.

More precisely:

Definition

Let G be a permutation group of [n]. We say that G is
well-shuffling with power a > 0 if cost(G, r) := Q(fg.,) = Q(r*/?),
where we define

fcr :GUD,, — {0,1}

0 ifxeG (6)
X — .
1 ifxée Dy,

Well-shuffling implies R and @ are polynomially close

Theorem

Let f : D C X" — {0,1} be symmetric under G. Then, there
exists a ¢ > 0 such that: if Q(f) < cost(G,r)/c then R(f) <'r.
Hence: if G is well-shuffling with power a then R(f) = O(Q(f)?).

Proof sketch?.

1. Let Q be a quantum algorithm computing f using Q(f)
queries to Oy, where x € D is the input.

2. Replacing all Oy by Oyor where m € G doesn’t change the
output much. Because f is symmetric under G.

3. Then replacing Oxor by Oxoq doesn’t change the output
much, where a € D, , and x o « is the length-n string with
entries (x o at)j = X,;. Because Q(f) < cost(G,r)/c.

4. The last quantum circuit queries at most r entries of x, so can
simulate by a randomized algorithm using at most r queries.

L]

2Chailloux (2018).

Hypergraph symmetries are well-shuffling (1/2)

(p = 1)-uniform hypergraph symmetries are exactly those in the
full permutation group G = S, of [n].

Theorem
S is well-shuffling with power 3.

Proof.

1. Unpack the statement: suppose we have a quantum algorithm
Q that distinguishes between length-n strings x with at most
r distinct entries from ones that are 1-to-1, then Q must use
Q(r'/3) queries to O.

2. But we can run Q to distinguish between length-n strings that
are (n/r)-to-1 from ones that are 1-to-1, that is, solve the
collision problem. So Q must use Q(r'/3) queries by the lower
bound for the collision problem.

L]

Hypergraph symmetries are well-shuffling (2/2)
p-uniform hypergraph symmetries form a permutation group
G = Sh of [(g)] induced by the permutation group S, of [n].

Theorem
SP is well-shuffling with power 3p.

Proof sketch.

1. Instead of S, first prove the same statement for permutation
group S of [nP] = [n]P that consists of permutations 7 that
map (i1, i2, .. ., ip) € [n]P to (w(ir), w(h2), ... ,W(ip)).

2. If can distinguish S,(,p) from Dpp s.—rp using Q queries, then
can distinguish S, from D, , using O(pQ) queries, which is at
least Q(r1/3 = s1/GP)). So Q = Q(s¥/GP) /p). So S is
well-shuffling with power 3p.

3. Not hard to see that SF is “more well-shuffling” than st
which gives the Theorem.

Computing hypergraph properties admits at most a
polynomial quantum speedup

We have shown:

Theorem

Let f : D C X" — {0,1} be symmetric under G. Then, there
exists a ¢ > 0 such that: if Q(f) < cost(G,r)/c then R(f) <r. If
G is well-shuffling with power a, then R(f) = O(Q(f)?), and

Theorem
SF is well-shuffling with power 3p.

But a p-uniform hypergraph property is symmetric under G = SF,
which is well-shuffling with power 3p. Hence:

Corollary
R(f) = O(Q(f)3P) for any p-uniform hypergraph property f.

Symmetries of primitive permutation groups

Base of permutation groups and quantum speedups (1/3)

Definition

A base of a permutation group G of [n] is a set S C [n] such that
if h € G and h(x) = x for all x € S then h is the identity element
in G. The base size b(G) of G is the minimal size of a base.

Examples:

1. S3 of [3] has base size 2; a base is {1,2};

Sp of [n] has base size n —1; a base is {1,2,...,n—1}.

2. GL;(F2), invertible n x n matrices over F», of F has base
size n; a base is {(1,0,...,0),...,(0,0,...,1)} (standard
basis of F]). Note that the base size is very small in the sense
that it equals log,(|F3| = 2).

3. If h,k € G agree on a base, then hk~! fixes that base, so
h = k by definition. So if you know how h behaves on a base,
you can identify h.

Base of permutation groups and quantum speedups (2/3)

Theorem

Let G be a permutation group of [n], and let f : D C X" — {0,1}.
Then, there exists a partial Boolean function h that is symmetric
under G such that Q(h) < Q(f)+ b(G) and R(h) > R(f).

Proof sketch.
Example: n=2, D = {(a,a),(b,a)} C " = {a,b}?> and G = S,.
Construct the set Dg of “G-permutations of D":

D¢ ={l(a;1),(a,2)], [(a,2),(a,1)], [(b,1),(a,2)], [(a,2), (b, 1)]}

C(Zx)" ={(a1), (a2), (b, 1), (b,2)}? -

7

and let h be “the same as” f. Then h: Dg C (X x [n])" — {0,1}
is by definition symmetric under G. Q(h) < Q(f) + b(G): query

the indices in the base to identify the G-permutation, then reverse

this permutation, and use algorithm for computing f to compute
h. R(h) > R(f): clear as h is harder to compute than f. O

Base of permutation groups and quantum speedups (3/3)

Theorem

Let G be a permutation group of [n], and let f : D C X" — {0, 1}.
Then, there exists a partial Boolean function h that is symmetric
under G such that Q(h) < Q(f) + b(G) and R(h) > R(f).

Consequence. If G has base size b(G) = O(n°(V)), then we can
construct a h that is symmetric under G and possesses a
super-polynomial speedup as follows.

In the Theorem above take f to be the function in Simon'’s
problem, then Q(f) = O(log n), but R(f) = Q(+/n). Therefore

Q(f) + b(G) = O(log n) + O(n°M) = O(n°W),
ROF) — (8)

() = Q(Vn).

This represents a super-polynomial speedup by definition.

Primitive permutation groups

Primitive permutation groups are special types of transitive
permutation groups that are the “building-blocks” of all
permutation groups.

Theorem (Liebeck, 1984)

Let G be a primitive permutation group of [n]. Then one of the
following cases hold.:

1. n= (,;,)e and G contains permutations of [n] = [(Z’)]é that
permutes each of the (-entries according to Ah, C Sh (most
p-uniform hypergraph symmetries).

2. b(G) < 9logy(n).

In Case 2, we can get an exponential quantum speedup via
Theorem on last slide. In Case 1, we can get at most a 3¢p-power
quantum speedup, which is polynomial for constant £, p. The
converse can be proved via Theorem on last slide: if £, p are not
both constant, we can get a super-polynomial quantum speedup.

Adjacency list model

Brief overview (1/2)

Main idea: upgrade the glued-trees problem?, which has an
exponential quantum speedup in the adjacency list model, to a
property-testing problem.

Execution:
1. can classically test the entire glued-trees structure if we mark
the leaves of the two trees that are glued,
2. mark the leaves in a way that can only be read efficiently by a
quantum computer but not a classical computer - use further
copies of the glued-trees problem.

3Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman (2003).

Brief overview (2/2)
The graph property (i.e. yes-instances):

Six ‘“candy” (sub)graphs and five of

the many “advice edges’ (indicated by

double lines) that connect each body
vertex to a distinct antenna vertex.
\\ The circles in the figure represent self-

loops at the roots of the candy graphs,
which provide advice about whether a
body vertex is a leaf or non-leaf. Even

parity of circles indicates non-leaf, odd

parity indicates leaf.

where

AR

Open problems

Open problems

Thank you for your attention! Here are some of our open problems:

1. We showed that R(f) = O(Q(f)3P) for computing p-uniform
hypergraph properties f in the adjacency matrix model, but
what is the largest possible separation? That is, what is the
largest k for which there exists such an f with
R(f) = Q(Q(f)*)? Know k > p. Open even for p = 1.

2. Can we get a complete characterization theorem regarding
which (arbitrary) permutation groups allow super-polynomial
quantum speedups and which do not? Feel close already.

3. Does there exist a graph property testing problem of practical
interest in the adjacency list model that admits an exponential
or super-polynomial quantum speedup? We also conjecture
that deciding a monotone graph property cannot admit a
super-polynomial quantum speedup.

Appendix: primitive permutation groups

Definition

A primitive permutation group G of [n] is a transitive permutation
group such that the only partitions B := { By, ..., Bx} of [n]
preserved by G, i.e. w(B) = {n(B;)}; = B for all m € G, are {G}
and the partition into singletons.

Example of a transitive but imprimitive permutation group.
Let n = 4, consider permutation group G = ((12)(34), (13)(24))
of [4]. G is transitive, but preserves the following partition:

B = {Bl = {173}7 B, = {274}}7 (9)

so is imprimitive.

	Introduction
	Symmetries of graphs in adjacency matrix model
	Symmetries of primitive permutation groups
	Adjacency list model
	Open problems

