Symmetries, graph properties, and quantum speedups

Daochen Wang
University of Maryland

Joint work with Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, and Supartha Podder

arXiv: 2006.12760

Microsoft Research
6th July 2020

Outline

Introduction

Symmetries of graphs in adjacency matrix model

Symmetries of primitive permutation groups

Adjacency list model

Open problems

Introduction

Query complexity (1/4)

The first problem. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be known in advance. Given unknown input $x \in\{0,1\}^{n}$ to f. How many bits of x do you need to deterministically read (aka query) to compute f ?

Examples:

1. $f=\mathrm{OR}$, i.e. $f(x)=1$ if and only if at least one bit of x is a 1 .
2. $f(x)=x_{1}$.
3. $f(x)=\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee x_{3}$.

The answer is known as the deterministic query complexity of f, denoted $D(f)$. If we can use random-ness and only require the output to be correct with probability at least $2 / 3$, then the answer is known as the randomized query complexity of f, denoted $R(f)$.

Query complexity (2/4)

If we can use quantum-ness and only require the output to be correct with probability at least $2 / 3$, then the answer is known as the quantum query complexity of f, denoted $Q(f)$.

More precisely, quantum-ness means we can do quantum computations and have access to the quantum oracle

$$
\begin{align*}
O_{x}: \mathbb{C}^{n} \otimes \mathbb{C}^{2} & \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{2} \\
|i\rangle \otimes|b\rangle & \mapsto|i\rangle \otimes\left|b \oplus x_{i}\right\rangle . \tag{1}
\end{align*}
$$

This means we can query the bits of x in superposition.
Fact: $Q(f) \leq R(f) \leq D(f)$.

Query complexity (3/4)

More generally, can consider $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\} . \Sigma$ is known as the input alphabet, previously $\Sigma=\{0,1\}$. The domain \mathcal{D} is known as the promise on the input $x \in \Sigma^{n}$. When $\mathcal{D}=\Sigma^{n}, f$ is said to be total, else it is said to be partial. The query complexity of f can depend significantly on the promise.

Examples:

1. $f=\mathrm{OR}$ and $\Sigma=\{0,1\}$, but now $\mathcal{D}=\left\{0^{n}\right\}^{c}$, i.e. promised input is not 0^{n}, the all-zeros bitstring.
2. When f is total and $\Sigma=\{0,1\}$, then ${ }^{1}$ $R(f) \leq D(f)=O\left(Q(f)^{4}\right)$. In particular, no exponential speedups.
(It may help to think of $x=O(y)$ as $x \leq y$ and $x=\Omega(y)$ as $x \geq y$ because we don't care about constants.)
${ }^{1}$ Aaronson, Ben-David, Kothari, and Tal (2020).

Query complexity (4/4)

Still consider $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$. Input $x \in \mathcal{D} \subset \Sigma^{n}, x$ can be viewed as a function from $[n]$ to Σ.

Collision problem. $\Sigma=[n]:=\{1,2, \ldots, n\}$. Promised that x is either 1-to-1 $(f=0)$ or $(k>1)$-to-1 $(f=1)$. $Q(f)=\Theta\left((n / k)^{1 / 3}\right) ; R(f)=\Theta\left((n / k)^{1 / 2}\right)$. Polynomial speedup.

Simon's problem. $\Sigma=[n]$, where $n=2^{k}$. View the n indices of x as labelled by $\{0,1\}^{k}$. Promised that either x is 1 -to- $1(f=0)$ or there exists an $a \neq 0^{k}$ such that $x_{i}=x_{i \oplus a}$ for all $i(f=1)$.
$Q(f)=\Theta\left(k=\log _{2} n\right) ; R(f)=\Theta(\sqrt{n})$. Exponential speedup!

Models of graphs: adjacency matrix

In the adjacency matrix model, a (simple) graph on vertex set $[n]=\{1, \ldots, n\}$ is modelled by a $\binom{n}{2}$-bit string, where the indices are first identified with edges and the bit-value at an index indicates whether that edge is present.

For example, under the following index-edge identification:

$$
\begin{align*}
& 1 \leftrightarrow\{1,2\}, 2 \leftrightarrow\{1,3\}, 3 \leftrightarrow\{1,4\}, \tag{2}\\
& 4 \leftrightarrow\{2,3\}, 5 \leftrightarrow\{2,4\}, 6 \leftrightarrow\{3,4\},
\end{align*}
$$

the graph below with $n=4$ is modelled by $x=100111$.

Models of graphs: adjacency list

In the adjacency list model, a (simple) graph of bounded degree d on vertex set $[n]$ is modelled by a $n \times d$ matrix - which can then be collapsed into a length-($n d$) string.

For example, the graph (same as before):

with $n=4, d=3$ can be modelled by

$$
x=\left[\begin{array}{lll}
2 & * & * \tag{3}\\
1 & 3 & 4 \\
4 & 2 & * \\
2 & 3 & *
\end{array}\right] \quad \text { or } \quad x=\left[\begin{array}{lll}
2 & * & * \\
4 & 1 & 3 \\
2 & 4 & * \\
3 & 2 & *
\end{array}\right]
$$

among other possibilities.

Graph properties

A graph property f is a function from a set of graphs (specified either in the adjacency matrix or list model) to $\{0,1\}$ that is invariant under graph isomorphisms, i.e. vertex relabellings.

Examples:

1. Having a triangle or not is a graph property.
2. f must evaluate to the same value on the following two isomorphic graphs. Note that the graphs are not the same, e.g. in the adjacency matrix model, the left one is $x=100111$ but the right one is $x=111010$ (under the same index-edge identification as before).

Symmetries of graphs in adjacency matrix model

Symmetric functions

Definition

A permutation group G of $[n]$ is a set of permutations of [n] that forms a group. To say a function $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$ is symmetric under G means, for all $\pi \in G$:

1. If $x \in \mathcal{D}$ then $x \circ \pi \in \mathcal{D}$, where $x \circ \pi \in \Sigma^{n}$ is defined by $(x \circ \pi)_{i}=x_{\pi(i)}$.
2. $f(x)=f(x \circ \pi)$ for all $x \in \mathcal{D}$. (Note that the RHS makes sense by the first condition.)

Main example. f is a graph property, $\Sigma=\{0,1\}$, and G are graph symmetries denoted S_{n}^{2}, i.e. the set of permutations of [$n=\binom{m}{2}$] induced by the S_{m} permutations of vertex set [m]. More generally, f is a p-uniform hypergraph property and $G=S_{n}^{p}$. (Fix $p=2$ if hypergraphs are unfamiliar.)

Permutation groups and small-range strings

A permutation group G of $[n]$ can be identified with a set of length- n strings in a natural way. For example, the permutation of [3] that maps

$$
\begin{equation*}
1 \mapsto 3, \quad 2 \mapsto 1, \quad 3 \mapsto 2 \tag{4}
\end{equation*}
$$

is identified with the 3 -bit string " 312 ".
Let $1<r<n$ be an integer. Consider another subset of length- n strings $D_{n, r}$ defined by having at most r distinct entries in [n]. For example:

$$
\begin{align*}
D_{3,2}=\{ & 111,222,333 \\
& 112,121,211,221,212,122 \tag{5}\\
& 113,131,311,331,313,133 \\
& 223,232,322,332,323,233\} .
\end{align*}
$$

$D_{n, r}$ is known as a set of small-range strings (with range r). Note that $D_{n, r}$ is disjoint from G, i.e. $D_{n, r} \cap G=\emptyset$.

Well-shuffling permutation groups

We say a permutation group is well-shuffling if it is hard for a quantum computer to distinguish it from small-range strings.

More precisely:

Definition

Let G be a permutation group of $[n]$. We say that G is well-shuffling with power $a>0$ if $\operatorname{cost}(G, r):=Q\left(f_{G, r}\right)=\Omega\left(r^{1 / a}\right)$, where we define

$$
\begin{align*}
f_{G, r}: & G \cup \cup D_{n, r} \\
& \rightarrow\{0,1\} \tag{6}\\
& \mapsto\left\{\begin{array}{ll}
0 & \text { if } x \in G \\
1 & \text { if } x \in D_{n, r}
\end{array} .\right.
\end{align*}
$$

Well-shuffling implies R and Q are polynomially close

Theorem
Let $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$ be symmetric under G. Then, there exists a $c>0$ such that: if $Q(f) \leq \operatorname{cost}(G, r) / c$ then $R(f) \leq r$. Hence: if G is well-shuffling with power a then $R(f)=O\left(Q(f)^{a}\right)$.
Proof sketch ${ }^{2}$.

1. Let Q be a quantum algorithm computing f using $Q(f)$ queries to O_{x}, where $x \in \mathcal{D}$ is the input.
2. Replacing all O_{x} by $O_{x \circ \pi}$ where $\pi \in G$ doesn't change the output much. Because f is symmetric under G.
3. Then replacing $O_{x \circ \pi}$ by $O_{x \circ \alpha}$ doesn't change the output much, where $\alpha \in D_{n, r}$ and $x \circ \alpha$ is the length- n string with entries $(x \circ \alpha)_{i}=x_{\alpha_{i}}$. Because $Q(f) \leq \operatorname{cost}(G, r) / c$.
4. The last quantum circuit queries at most r entries of x, so can simulate by a randomized algorithm using at most r queries.

Hypergraph symmetries are well-shuffling (1/2)

($p=1$)-uniform hypergraph symmetries are exactly those in the full permutation group $G=S_{n}$ of $[n]$.

Theorem
S_{n} is well-shuffling with power 3 .

Proof.

1. Unpack the statement: suppose we have a quantum algorithm Q that distinguishes between length- n strings x with at most r distinct entries from ones that are 1-to-1, then Q must use $\Omega\left(r^{1 / 3}\right)$ queries to O_{x}.
2. But we can run Q to distinguish between length- n strings that are (n / r)-to- 1 from ones that are 1-to- 1 , that is, solve the collision problem. So Q must use $\Omega\left(r^{1 / 3}\right)$ queries by the lower bound for the collision problem.

Hypergraph symmetries are well-shuffling (2/2)

p-uniform hypergraph symmetries form a permutation group $G=S_{n}^{p}$ of $\left[\binom{n}{p}\right]$ induced by the permutation group S_{n} of $[n]$.
Theorem
S_{n}^{p} is well-shuffling with power $3 p$.

Proof sketch.

1. Instead of S_{n}^{p}, first prove the same statement for permutation group $S_{n}^{(p)}$ of $\left[n^{p}\right]=[n]^{p}$ that consists of permutations $\bar{\pi}$ that $\operatorname{map}\left(i_{1}, i_{2}, \ldots, i_{p}\right) \in[n]^{p}$ to $\left(\pi\left(i_{1}\right), \pi\left(i_{2}\right), \ldots, \pi\left(i_{p}\right)\right)$.
2. If can distinguish $S_{n}^{(p)}$ from $D_{n^{p}, s:=r^{p}}$ using Q queries, then can distinguish S_{n} from $D_{n, r}$ using $O(p Q)$ queries, which is at least $\Omega\left(r^{1 / 3}=s^{1 /(3 p)}\right)$. So $Q=\Omega\left(s^{1 /(3 p)} / p\right)$. So $S_{n}^{(p)}$ is well-shuffling with power $3 p$.
3. Not hard to see that S_{n}^{p} is "more well-shuffling" than $S_{n}^{(p)}$, which gives the Theorem.

Computing hypergraph properties admits at most a polynomial quantum speedup

We have shown:
Theorem
Let $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$ be symmetric under G. Then, there exists a $c>0$ such that: if $Q(f) \leq \operatorname{cost}(G, r) / c$ then $R(f) \leq r$. If G is well-shuffling with power a, then $R(f)=O\left(Q(f)^{a}\right)$; and

Theorem S_{n}^{p} is well-shuffling with power $3 p$.

But a p-uniform hypergraph property is symmetric under $G=S_{n}^{p}$, which is well-shuffling with power $3 p$. Hence:
Corollary
$R(f)=O\left(Q(f)^{3 p}\right)$ for any p-uniform hypergraph property f.

Symmetries of primitive permutation groups

Base of permutation groups and quantum speedups $(1 / 3)$

Definition

A base of a permutation group G of $[n]$ is a set $S \subset[n]$ such that if $h \in G$ and $h(x)=x$ for all $x \in S$ then h is the identity element in G. The base size $b(G)$ of G is the minimal size of a base.
Examples:

1. S_{3} of [3] has base size 2 ; a base is $\{1,2\}$; S_{n} of $[n]$ has base size $n-1$; a base is $\{1,2, \ldots, n-1\}$.
2. $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$, invertible $n \times n$ matrices over \mathbb{F}_{2}, of \mathbb{F}_{2}^{n} has base size n; a base is $\{(1,0, \ldots, 0), \ldots,(0,0, \ldots, 1)\}$ (standard basis of \mathbb{F}_{2}^{n}). Note that the base size is very small in the sense that it equals $\log _{2}\left(\left|\mathbb{F}_{2}^{n}\right|=2^{n}\right)$.
3. If $h, k \in G$ agree on a base, then $h k^{-1}$ fixes that base, so $h=k$ by definition. So if you know how h behaves on a base, you can identify h.

Base of permutation groups and quantum speedups $(2 / 3)$

Theorem

Let G be a permutation group of $[n]$, and let $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$. Then, there exists a partial Boolean function h that is symmetric under G such that $Q(h) \leq Q(f)+b(G)$ and $R(h) \geq R(f)$.

Proof sketch.
Example: $n=2, \mathcal{D}=\{(a, a),(b, a)\} \subset \Sigma^{n}=\{a, b\}^{2}$ and $G=S_{2}$. Construct the set \mathcal{D}_{G} of " G-permutations of \mathcal{D} ":

$$
\begin{align*}
\mathcal{D}_{G} & :=\{[(a, 1),(a, 2)],[(a, 2),(a, 1)],[(b, 1),(a, 2)],[(a, 2),(b, 1)]\} \\
& \subset(\Sigma \times[n])^{n}=\{(a, 1),(a, 2),(b, 1),(b, 2)\}^{2} \tag{7}
\end{align*}
$$

and let h be "the same as" f. Then $h: \mathcal{D}_{G} \subset(\Sigma \times[n])^{n} \rightarrow\{0,1\}$ is by definition symmetric under $G . Q(h) \leq Q(f)+b(G)$: query the indices in the base to identify the G-permutation, then reverse this permutation, and use algorithm for computing f to compute h. $R(h) \geq R(f)$: clear as h is harder to compute than f.

Base of permutation groups and quantum speedups $(3 / 3)$

Theorem

Let G be a permutation group of $[n]$, and let $f: \mathcal{D} \subset \Sigma^{n} \rightarrow\{0,1\}$. Then, there exists a partial Boolean function h that is symmetric under G such that $Q(h) \leq Q(f)+b(G)$ and $R(h) \geq R(f)$.

Consequence. If G has base size $b(G)=O\left(n^{o(1)}\right)$, then we can construct a h that is symmetric under G and possesses a super-polynomial speedup as follows.

In the Theorem above take f to be the function in Simon's problem, then $Q(f)=O(\log n)$, but $R(f)=\Omega(\sqrt{n})$. Therefore

$$
\begin{align*}
& Q(h) \leq Q(f)+b(G)=O(\log n)+O\left(n^{o(1)}\right)=O\left(n^{o(1)}\right) \tag{8}\\
& R(h) \geq R(f)=\Omega(\sqrt{n})
\end{align*}
$$

This represents a super-polynomial speedup by definition.

Primitive permutation groups

Primitive permutation groups are special types of transitive permutation groups that are the "building-blocks" of all permutation groups.

Theorem (Liebeck, 1984)

Let G be a primitive permutation group of $[n]$. Then one of the following cases hold:

$$
\begin{aligned}
& \text { 1. } n=\binom{m}{p}^{\ell} \text { and } G \text { contains permutations of }[n]=\left[\binom{m}{p}\right]^{\ell} \text { that } \\
& \text { permutes each of the } \ell \text {-entries according to } A_{m}^{p} \subset S_{m}^{p} \text { (most } \\
& p \text {-uniform hypergraph symmetries). } \\
& \text { 2. } b(G)<9 \log _{2}(n) .
\end{aligned}
$$

In Case 2, we can get an exponential quantum speedup via Theorem on last slide. In Case 1, we can get at most a $3 \ell p$-power quantum speedup, which is polynomial for constant ℓ, p. The converse can be proved via Theorem on last slide: if ℓ, p are not both constant, we can get a super-polynomial quantum speedup.

Adjacency list model

Brief overview (1/2)

Main idea: upgrade the glued-trees problem ${ }^{3}$, which has an exponential quantum speedup in the adjacency list model, to a property-testing problem.

Execution:

1. can classically test the entire glued-trees structure if we mark the leaves of the two trees that are glued,
2. mark the leaves in a way that can only be read efficiently by a quantum computer but not a classical computer - use further copies of the glued-trees problem.
[^0]
Brief overview (2/2)

The graph property (i.e. yes-instances):

Six "candy" (sub)graphs and five of the many "advice edges" (indicated by double lines) that connect each body vertex to a distinct antenna vertex.

The circles in the figure represent selfloops at the roots of the candy graphs, which provide advice about whether a body vertex is a leaf or non-leaf. Even parity of circles indicates non-leaf, odd parity indicates leaf.
where

Open problems

Open problems

Thank you for your attention! Here are some of our open problems:

1. We showed that $R(f)=O\left(Q(f)^{3 p}\right)$ for computing p-uniform hypergraph properties f in the adjacency matrix model, but what is the largest possible separation? That is, what is the largest k for which there exists such an f with $R(f)=\Omega\left(Q(f)^{k}\right)$? Know $k \geq p$. Open even for $p=1$.
2. Can we get a complete characterization theorem regarding which (arbitrary) permutation groups allow super-polynomial quantum speedups and which do not? Feel close already.
3. Does there exist a graph property testing problem of practical interest in the adjacency list model that admits an exponential or super-polynomial quantum speedup? We also conjecture that deciding a monotone graph property cannot admit a super-polynomial quantum speedup.

Appendix: primitive permutation groups

Definition

A primitive permutation group G of $[n]$ is a transitive permutation group such that the only partitions $\mathcal{B}:=\left\{B_{1}, \ldots, B_{k}\right\}$ of $[n]$ preserved by G, i.e. $\pi(\mathcal{B}):=\left\{\pi\left(B_{i}\right)\right\}_{i}=\mathcal{B}$ for all $\pi \in G$, are $\{G\}$ and the partition into singletons.

Example of a transitive but imprimitive permutation group. Let $n=4$, consider permutation group $G=\langle(12)(34),(13)(24)\rangle$ of [4]. G is transitive, but preserves the following partition:

$$
\begin{equation*}
\mathcal{B}=\left\{B_{1}=\{1,3\}, B_{2}=\{2,4\}\right\}, \tag{9}
\end{equation*}
$$

so is imprimitive.

[^0]: ${ }^{3}$ Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman (2003).

