
Symmetries, graph properties, and
quantum speedups

Daochen Wang
University of Maryland

Joint work with Shalev Ben-David, Andrew M. Childs,
András Gilyén, William Kretschmer, and Supartha Podder

arXiv: 2006.12760

Microsoft Research
6th July 2020

https://arxiv.org/abs/2006.12760

Outline

Introduction

Symmetries of graphs in adjacency matrix model

Symmetries of primitive permutation groups

Adjacency list model

Open problems

Introduction

Query complexity (1/4)

The first problem. Let f : {0, 1}n ! {0, 1} be known in advance.
Given unknown input x 2 {0, 1}n to f . How many bits of x do you
need to deterministically read (aka query) to compute f ?

Examples:

1. f = OR, i.e. f (x) = 1 if and only if at least one bit of x is a 1.

2. f (x) = x1.

3. f (x) = (x1 ^ x2 ^ x3) _ x3.

The answer is known as the deterministic query complexity of f ,
denoted D(f). If we can use random-ness and only require the
output to be correct with probability at least 2/3, then the answer
is known as the randomized query complexity of f , denoted R(f).

Query complexity (2/4)

If we can use quantum-ness and only require the output to be
correct with probability at least 2/3, then the answer is known as
the quantum query complexity of f , denoted Q(f).

More precisely, quantum-ness means we can do quantum
computations and have access to the quantum oracle

Ox : Cn ⌦ C2 ! Cn ⌦ C2

|ii ⌦ |bi 7! |ii ⌦ |b � xi i .
(1)

This means we can query the bits of x in superposition.

Fact: Q(f) R(f) D(f).

Query complexity (3/4)

More generally, can consider f : D ⇢ ⌃n ! {0, 1}. ⌃ is known as
the input alphabet, previously ⌃ = {0, 1}. The domain D is known
as the promise on the input x 2 ⌃n. When D = ⌃n, f is said to be
total, else it is said to be partial. The query complexity of f can
depend significantly on the promise.

Examples:

1. f = OR and ⌃ = {0, 1}, but now D = {0n}c , i.e. promised
input is not 0n, the all-zeros bitstring.

2. When f is total and ⌃ = {0, 1}, then1
R(f) D(f) = O(Q(f)4). In particular, no exponential
speedups.

(It may help to think of x = O(y) as x y and x = ⌦(y) as
x � y because we don’t care about constants.)

1Aaronson, Ben-David, Kothari, and Tal (2020).

Query complexity (4/4)

Still consider f : D ⇢ ⌃n ! {0, 1}. Input x 2 D ⇢ ⌃n, x can be
viewed as a function from [n] to ⌃.

Collision problem. ⌃ = [n] := {1, 2, . . . , n}. Promised that x is
either 1-to-1 (f = 0) or (k > 1)-to-1 (f = 1).

Q(f) = ⇥((n/k)1/3); R(f) = ⇥((n/k)1/2). Polynomial speedup.

Simon’s problem. ⌃ = [n], where n = 2k . View the n indices of x
as labelled by {0, 1}k . Promised that either x is 1-to-1 (f = 0) or
there exists an a 6= 0k such that xi = xi�a for all i (f = 1).

Q(f) = ⇥(k = log2 n); R(f) = ⇥(
p
n). Exponential speedup!

Models of graphs: adjacency matrix

In the adjacency matrix model, a (simple) graph on vertex set
[n] = {1, . . . , n} is modelled by a

�n
2

�
-bit string, where the indices

are first identified with edges and the bit-value at an index
indicates whether that edge is present.

For example, under the following index-edge identification:

1 $ {1, 2}, 2 $ {1, 3}, 3 $ {1, 4},
4 $ {2, 3}, 5 $ {2, 4}, 6 $ {3, 4},

(2)

the graph below with n = 4 is modelled by x = 100111.

1

2 3

4

Models of graphs: adjacency list
In the adjacency list model, a (simple) graph of bounded degree d
on vertex set [n] is modelled by a n ⇥ d matrix – which can then
be collapsed into a length-(nd) string.

For example, the graph (same as before):

1

2 3

4

with n = 4, d = 3 can be modelled by

x =

2

664

2 ⇤ ⇤
1 3 4
4 2 ⇤
2 3 ⇤

3

775 or x =

2

664

2 ⇤ ⇤
4 1 3
2 4 ⇤
3 2 ⇤

3

775 (3)

among other possibilities.

Graph properties
A graph property f is a function from a set of graphs (specified
either in the adjacency matrix or list model) to {0, 1} that is
invariant under graph isomorphisms, i.e. vertex relabellings.

Examples:

1. Having a triangle or not is a graph property.

2. f must evaluate to the same value on the following two
isomorphic graphs. Note that the graphs are not the same,
e.g. in the adjacency matrix model, the left one is x = 100111
but the right one is x = 111010 (under the same index-edge
identification as before).

1

2 3

4 3

1 4

2

Symmetries of graphs in adjacency matrix model

Symmetric functions

Definition
A permutation group G of [n] is a set of permutations of [n] that
forms a group. To say a function f : D ⇢ ⌃n ! {0, 1} is
symmetric under G means, for all ⇡ 2 G :

1. If x 2 D then x � ⇡ 2 D, where x � ⇡ 2 ⌃n is defined by
(x � ⇡)i = x⇡(i).

2. f (x) = f (x � ⇡) for all x 2 D. (Note that the RHS makes
sense by the first condition.)

Main example. f is a graph property, ⌃ = {0, 1}, and G are
graph symmetries denoted S2

n , i.e. the set of permutations of
[n =

�m
2

�
] induced by the Sm permutations of vertex set [m]. More

generally, f is a p-uniform hypergraph property and G = Sp
n . (Fix

p = 2 if hypergraphs are unfamiliar.)

Permutation groups and small-range strings

A permutation group G of [n] can be identified with a set of
length-n strings in a natural way. For example, the permutation of
[3] that maps

1 7! 3, 2 7! 1, 3 7! 2 (4)

is identified with the 3-bit string “312”.

Let 1 < r < n be an integer. Consider another subset of length-n
strings Dn,r defined by having at most r distinct entries in [n]. For
example:

D3,2 = {111, 222, 333,
112, 121, 211, 221, 212, 122,

113, 131, 311, 331, 313, 133,

223, 232, 322, 332, 323, 233}.

(5)

Dn,r is known as a set of small-range strings (with range r). Note
that Dn,r is disjoint from G , i.e. Dn,r \ G = ;.

Well-shu✏ing permutation groups

We say a permutation group is well-shu✏ing if it is hard for a
quantum computer to distinguish it from small-range strings.

More precisely:

Definition
Let G be a permutation group of [n]. We say that G is
well-shu✏ing with power a > 0 if cost(G , r) := Q(fG ,r) = ⌦(r1/a),
where we define

fG ,r :G [̇Dn,r ! {0, 1}

x 7!
(
0 if x 2 G

1 if x 2 Dn,r
.

(6)

Well-shu✏ing implies R and Q are polynomially close

Theorem
Let f : D ⇢ ⌃n ! {0, 1} be symmetric under G . Then, there
exists a c > 0 such that: if Q(f) cost(G , r)/c then R(f) r .
Hence: if G is well-shu✏ing with power a then R(f) = O(Q(f)a).

Proof sketch2.

1. Let Q be a quantum algorithm computing f using Q(f)
queries to Ox , where x 2 D is the input.

2. Replacing all Ox by Ox�⇡ where ⇡ 2 G doesn’t change the
output much. Because f is symmetric under G .

3. Then replacing Ox�⇡ by Ox�↵ doesn’t change the output
much, where ↵ 2 Dn,r and x � ↵ is the length-n string with
entries (x � ↵)i = x↵i . Because Q(f) cost(G , r)/c .

4. The last quantum circuit queries at most r entries of x , so can
simulate by a randomized algorithm using at most r queries.

2Chailloux (2018).

Hypergraph symmetries are well-shu✏ing (1/2)

(p = 1)-uniform hypergraph symmetries are exactly those in the
full permutation group G = Sn of [n].

Theorem
Sn is well-shu✏ing with power 3.

Proof.

1. Unpack the statement: suppose we have a quantum algorithm
Q that distinguishes between length-n strings x with at most
r distinct entries from ones that are 1-to-1, then Q must use
⌦(r1/3) queries to Ox .

2. But we can run Q to distinguish between length-n strings that
are (n/r)-to-1 from ones that are 1-to-1, that is, solve the
collision problem. So Q must use ⌦(r1/3) queries by the lower
bound for the collision problem.

Hypergraph symmetries are well-shu✏ing (2/2)
p-uniform hypergraph symmetries form a permutation group
G = Sp

n of [
�n
p

�
] induced by the permutation group Sn of [n].

Theorem
Sp
n is well-shu✏ing with power 3p.

Proof sketch.

1. Instead of Sp
n , first prove the same statement for permutation

group S (p)
n of [np] = [n]p that consists of permutations ⇡̄ that

map (i1, i2, . . . , ip) 2 [n]p to (⇡(i1),⇡(i2), . . . ,⇡(ip)).

2. If can distinguish S (p)
n from Dnp ,s:=rp using Q queries, then

can distinguish Sn from Dn,r using O(pQ) queries, which is at

least ⌦(r1/3 = s1/(3p)). So Q = ⌦(s1/(3p)/p). So S (p)
n is

well-shu✏ing with power 3p.

3. Not hard to see that Sp
n is “more well-shu✏ing” than S (p)

n ,
which gives the Theorem.

Computing hypergraph properties admits at most a
polynomial quantum speedup

We have shown:

Theorem
Let f : D ⇢ ⌃n ! {0, 1} be symmetric under G . Then, there
exists a c > 0 such that: if Q(f) cost(G , r)/c then R(f) r . If
G is well-shu✏ing with power a, then R(f) = O(Q(f)a); and

Theorem
Sp
n is well-shu✏ing with power 3p.

But a p-uniform hypergraph property is symmetric under G = Sp
n ,

which is well-shu✏ing with power 3p. Hence:

Corollary
R(f) = O(Q(f)3p) for any p-uniform hypergraph property f .

Symmetries of primitive permutation groups

Base of permutation groups and quantum speedups (1/3)

Definition
A base of a permutation group G of [n] is a set S ⇢ [n] such that
if h 2 G and h(x) = x for all x 2 S then h is the identity element
in G . The base size b(G) of G is the minimal size of a base.

Examples:

1. S3 of [3] has base size 2; a base is {1, 2};
Sn of [n] has base size n � 1; a base is {1, 2, . . . , n � 1}.

2. GLn(F2), invertible n ⇥ n matrices over F2, of Fn
2 has base

size n; a base is {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} (standard
basis of Fn

2). Note that the base size is very small in the sense
that it equals log2(|Fn

2| = 2n).

3. If h, k 2 G agree on a base, then hk�1 fixes that base, so
h = k by definition. So if you know how h behaves on a base,
you can identify h.

Base of permutation groups and quantum speedups (2/3)

Theorem
Let G be a permutation group of [n], and let f : D ⇢ ⌃n ! {0, 1}.
Then, there exists a partial Boolean function h that is symmetric
under G such that Q(h) Q(f) + b(G) and R(h) � R(f).

Proof sketch.
Example: n = 2, D = {(a, a), (b, a)} ⇢ ⌃n = {a, b}2 and G = S2.
Construct the set DG of “G -permutations of D”:

DG := {[(a, 1), (a, 2)], [(a, 2), (a, 1)], [(b, 1), (a, 2)], [(a, 2), (b, 1)]}
⇢ (⌃⇥ [n])n = {(a, 1), (a, 2), (b, 1), (b, 2)}2

(7)
and let h be “the same as” f . Then h : DG ⇢ (⌃⇥ [n])n ! {0, 1}
is by definition symmetric under G . Q(h) Q(f) + b(G): query
the indices in the base to identify the G -permutation, then reverse
this permutation, and use algorithm for computing f to compute
h. R(h) � R(f): clear as h is harder to compute than f .

Base of permutation groups and quantum speedups (3/3)

Theorem
Let G be a permutation group of [n], and let f : D ⇢ ⌃n ! {0, 1}.
Then, there exists a partial Boolean function h that is symmetric
under G such that Q(h) Q(f) + b(G) and R(h) � R(f).

Consequence. If G has base size b(G) = O(no(1)), then we can
construct a h that is symmetric under G and possesses a
super-polynomial speedup as follows.

In the Theorem above take f to be the function in Simon’s
problem, then Q(f) = O(log n), but R(f) = ⌦(

p
n). Therefore

Q(h) Q(f) + b(G) = O(log n) + O(no(1)) = O(no(1)),

R(h) � R(f) = ⌦(
p
n).

(8)

This represents a super-polynomial speedup by definition.

Primitive permutation groups

Primitive permutation groups are special types of transitive
permutation groups that are the “building-blocks” of all
permutation groups.

Theorem (Liebeck, 1984)

Let G be a primitive permutation group of [n]. Then one of the
following cases hold:

1. n =
�m
p

�`
and G contains permutations of [n] = [

�m
p

�
]` that

permutes each of the `-entries according to Ap
m ⇢ Sp

m (most
p-uniform hypergraph symmetries).

2. b(G) < 9 log2(n).

In Case 2, we can get an exponential quantum speedup via
Theorem on last slide. In Case 1, we can get at most a 3`p-power
quantum speedup, which is polynomial for constant `, p. The
converse can be proved via Theorem on last slide: if `, p are not
both constant, we can get a super-polynomial quantum speedup.

Adjacency list model

Brief overview (1/2)

Main idea: upgrade the glued-trees problem3, which has an
exponential quantum speedup in the adjacency list model, to a
property-testing problem.

Execution:

1. can classically test the entire glued-trees structure if we mark
the leaves of the two trees that are glued,

2. mark the leaves in a way that can only be read e�ciently by a
quantum computer but not a classical computer - use further
copies of the glued-trees problem.

3Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman (2003).

Brief overview (2/2)

The graph property (i.e. yes-instances):

Six “candy” (sub)graphs and five of

the many “advice edges” (indicated by

double lines) that connect each body

vertex to a distinct antenna vertex.

The circles in the figure represent self-

loops at the roots of the candy graphs,

which provide advice about whether a

body vertex is a leaf or non-leaf. Even

parity of circles indicates non-leaf, odd

parity indicates leaf.

where

=Body

A
n
te
n
n
a

A
n
te
n
n
a

Open problems

Open problems

Thank you for your attention! Here are some of our open problems:

1. We showed that R(f) = O(Q(f)3p) for computing p-uniform
hypergraph properties f in the adjacency matrix model, but
what is the largest possible separation? That is, what is the
largest k for which there exists such an f with
R(f) = ⌦(Q(f)k)? Know k � p. Open even for p = 1.

2. Can we get a complete characterization theorem regarding
which (arbitrary) permutation groups allow super-polynomial
quantum speedups and which do not? Feel close already.

3. Does there exist a graph property testing problem of practical
interest in the adjacency list model that admits an exponential
or super-polynomial quantum speedup? We also conjecture
that deciding a monotone graph property cannot admit a
super-polynomial quantum speedup.

Appendix: primitive permutation groups

Definition
A primitive permutation group G of [n] is a transitive permutation
group such that the only partitions B := {B1, . . . ,Bk} of [n]
preserved by G , i.e. ⇡(B) := {⇡(Bi)}i = B for all ⇡ 2 G , are {G}
and the partition into singletons.

Example of a transitive but imprimitive permutation group.
Let n = 4, consider permutation group G = h(12)(34), (13)(24)i
of [4]. G is transitive, but preserves the following partition:

B = {B1 = {1, 3}, B2 = {2, 4}}, (9)

so is imprimitive.

	Introduction
	Symmetries of graphs in adjacency matrix model
	Symmetries of primitive permutation groups
	Adjacency list model
	Open problems

