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Application
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Design Quantum divide and conquer 

[CKKSW, QIP 23]

Structure
Symmetries, graph properties, and 

quantum speedups 

[BCGKPW, FOCS 20 & QIP 21]



Quantum algorithms for reinforcement 
learning with a generative model


[WSKKR, ICML 21]

A theory of quantum differential equation 
solvers: limitations and fast-forwarding


[ALWZ, 23]

Efficient quantum measurement of 
Pauli operators in the presence of 

finite sampling error

[CvSWPCB, Quantum 21]

Parallel self-testing of EPR pairs 
under computational assumptions


[FWZ, 23]

Lattice-based quantum advantage 
from rotated measurements


[AMMW, 22]

Possibilistic simulation of quantum 
circuits by classical circuits


[W, PRA 22]

Quantum exploration algorithms 

for multi-armed bandits 


[WYLC, AAAI 21]

Quantum divide and conquer 

[CKKSW, QIP 23]

Symmetries, graph properties, and 
quantum speedups 


[BCGKPW, FOCS 20 & QIP 21]



Query complexity
Let , suppose an algorithm  computes  correctly with 
probability  for all 


How many queries to (the oracle encoding) input  

does  need to make?

f : E ⊆ Σn → {0,1} 𝒜 f(x)
≥ 2/3 x ∈ E

x
𝒜 Classical query





Quantum query




i ↦ xi

| i ⟩ |a ⟩ ↦ | i ⟩ |a + xi ⟩
Answer denoted , , and , when  is  
deterministic, randomized, and quantum, respectively


Quantum speedup

D( f ) R( f ) Q( f ) 𝒜

⟺ Q( f ) < R( f )



Problem structure
Grover 


 
 

 and 

OR: {0,1}n → {0,1}

OR(x) = x1 ∨ x2 ∨ … ∨ xn

R(OR) = Θ(n) Q(OR) = Θ( n)

Simon  ,  is a power of 


  is a permutation of  or  has a hidden period 
 

 and 

fSimon : E ⊆ {1,…, n}n → {0,1} n 2

x ∈ E ⟺ x [n] = {1,…, n} x

R(fSimon) = Θ( n) Q(fSimon) = Θ(log n)

Observations

•Polynomial speedup

•Unstructured 

•Exponential speedup

•Highly structured

Key component of 
Shor’s algorithm



Symmetries and graph properties
Let  and , we say  is symmetrical under  if
f : E ⊆ ΣM → {0,1} G ≤ SM f G

x ∈ E ⟹ xσ(1)…xσ(M) ∈ E and f(x) = f(xσ(1)…xσ(M)) for all σ ∈ G

Prior work:   symmetrical under  [Aaronson, Ambainis 14; Chailloux 18]f G = SM ⟹ R( f ) ≤ O(Q( f )3)

Observation. Suppose  and , then

1. set of adjacency matrices of (simple) graphs on  vertices

2. graph property   symmetrical under  

Σ = {0,1} M = Cn
2 = n(n − 1)/2

ΣM ↔ n
f = ⟺ f G = {Permutations induced by Sn} ≤ SM

Graph A: , Graph B: 

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

↔ 100111

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

↔ 110101
  (1 2 3 4

4 3 1 2) induces (1 2 3 4 5 6
6 3 5 2 4 1)

π ∈ Sn induces {u, v} ↦ {π(u), π(v)}



Graph properties*  polynomial quantum speedup⟹
Suppose   symmetrical under  consisting of permutations of 
induced by :      induces 


Chailloux’s lemma (adapted). Suppose it takes at least  quantum queries to distinguish a random 
 from a random range-  function in , then  

Observation. If we can distinguish a random  from a random range-  function in  
with  quantum queries, then we can distinguish a random  from a random range-  function in 

 with  quantum queries 


Then [Zhandry 15]  


Conclusion. The hypothesis of Chailloux’s lemma holds with , so 

f : E ⊆ {0,1}n2 → {0,1} G = S(2)
n ≤ Sn2 [n2]

Sn π ∈ Sn (u, v) ∈ [n] × [n] ≅ [n2] ↦ (π(u), π(v))

Ω(r1/c)
σ ∈ G r Func([n2], [n2]) R( f ) = O(Q( f )c)

σ ∈ G r2 Func([n2], [n2])
q π ∈ Sn r

Func([n], [n]) q

⟹ q = Ω(r1/3) = Ω((r2)1/6)
c = 6 R( f ) = O(Q( f )6)

*In the adjacency matrix model

Proof extends to -uniform 

hypergraph properties

l



Exponential quantum speedup in the adjacency list model

Adjacency list oracle: query by , oracle returns the labels of neighbours of vertex labelled 


Glued-trees problem  
[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 02]

i ∈ [n] i

Find label of EXIT given adjacency list oracle of a 
glued trees graph and label of its ENTRANCE Not a graph property 

1.Label of ENTRANCE given

2.Answer changes after relabelling

k

Quantum: 


Randomized: 

O(poly(k))

2Ω(k)



Upgrade to a graph property

Problem. Decide if the graph 
has maximum degree  or not5

POINTERs

EXITENTRANCE

MARKERs

2k k k

Quantum: 

1. Sample random label until hit POINTER


2. Classically walk to ENTRANCE


3. Run quantum algorithm in  
[CCDFGS 02] to find EXIT

O(poly(k))



Classical lower bound

POINTERs

EXITENTRANCE

MARKERs

2k k k

Problem. Decide if the graph 
has maximum degree  or not5

Randomized: 

1. Can convert any randomized algorithm 

for solving this problem into one that 
solves the glued-trees problem


2. Result follows from [CCDFGS 02]

2Ω(k)



Further developments
• Complete characterization of the quantum speedup admitted by functions  

symmetric under primitive permutation group 

1. If  corresponds to -uniform hypergraph symmetries, then , 


2. Otherwise,  with  and 


 Near-complete characterization of how quantum speedup relate to symmetry under arbitrary 

f : E ⊆ Σn → {0,1}
G ≤ Sn

G l ∀f R( f ) ≤ O(Q( f )3l)
∃f R( f ) = Ω( n) Q( f ) = O(log n)

→ G

[BCGKPW 20]

where
1. Can classically test the entire

glued-trees if we mark the leaves
of the two trees that are glued.

2. Mark the leaves in a way that
can only be read e�ciently by a
quantum computer but not a
classical computer – use further
copies of the glued-trees problem.
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• Exponential quantum speedup graph property testing in the adjacency list model



Quantum algorithm design
•Fourier sampling


•Grover search/amplitude amplification


•Quantum walk


•Span programs


•Adiabatic optimization/QAOA


•Quantum signal processing/QSVT


•Quantum divide and conquer [CKKSW 22] 
 
…

[Aaronson, Grier, Schaeffer 19] 

[Akmal, Jin 22]
New!

New!

- Recognizing regular languages

- String rotation and string suffix

- Longest increasing subsequence

- Longest common subsequence

…

Applications



Divide and conquer
1. Divide a problem into subproblems


2. Recursively solve each subproblem


3. Combine the solutions of the subproblems to solve the full problem

Merge sort 2 7 4 6 5 3 1 8

2 7 4 6 5 3 1 8

1 2 3 4 5 6 7 8

2 4 6 7 1 3 5 8

Recurrence:


C(n) = 2C(n/2) + O(n) ⟹ C(n) = O(n log n)

Cost of solving subproblem

Cost of solving 
auxiliary problem



•   AND-OR. Suppose  is computed as  , where each 





• SWITCH-CASE. Suppose  is computed by first computing  and then some function , then 


f f1 □ f2 □ … □ fa □ faux □ ∈ { ∧ , ∨ }

Adv( f )2 ≤
a

∑
i=1

Adv( fi)2 + O(Q( faux)2)

f s = faux(x) gs(x)

Adv( f ) ≤ max
s

Adv(gs) + O(Q( faux))

Quantum divide and conquer
Every  can be associated with its adversary quantity, 


Theorem [Høyer, Lee, Špalek 07; Lee, Mittal, Reichardt, Špalek 10]. 

f : Σn → {0,1} Adv( f ) ≥ 0

Q( f ) = Θ(Adv( f ))

 Divide and conquer recurrences in the quantum setting→



Recognizing regular languages
Let ,  such that  iff 


02002110 ✅            02102112 ⛔

Σ = {0,1,2} fn : Σn → {0,1} fn(x) = 1 x ∈ Σ*20*2Σ*

Observation. Let , then





Let , then 


But , so 

gn(x) = (xleft ∈ Σ*20*) ∧ (xright ∈ 0*2Σ*)
fn(x) = fn/2(xleft) ∨ fn/2(xright) ∨ gn(x)

a(n) = Adv( fn) a(n)2 ≤ 2a2(n/2) + O(Q(gn)2)
Q(gn) = O( n) a(n) = O( n log n)



Longest common subsequence
-common subsequence ( -CS). Given , do  and  share a subsequence of length ?k k x, y ∈ Σn x y k

•  for  


•                bipartite element distinctness [Aaronson, Shi 04; Ambainis 03]


• using [Ambainis 03]

R(k-CS) = Θ(n) k ≥ 1

Q(1-CS) = Θ(n2/3) ←

Q(k-CS) = O(n2k/(2k+1)) ←

 ✅

 ⛔

k ≤ 4
k > 4

E i n s t e i n
E n t w i n e d

Can we do better?



Simple and composite -CSk

Composite

Divide the two input strings  and  into  parts each. Then, a -CS can either be simple or composite 

• A simple -CS is a -CS formed by symbols within a single part of  and a single part of 


• A composite -CS is any -CS that is not simple

x y m k
k k x y

k k

Simple k = 2, m = 3

Theorem. Let adversary quantity for -CS on input length . Then ak(n) = k n ak(n) = O(n2/3 logk−1 n)



Line between parts = 

parts share common symbol


Cost of computing lines = 
m2 ⋅ O(n2/3)

m = 3

Quantum divide and conquer on -CSk

Observations. 

• Detecting composite -CS takes  using inductive hypothesis and binary search


• Need to detect if there exists a simple -CS between  pairs of length-  substrings

k O(n2/3 logk−1 n)
k ≤ 2m − 1 (n/m)

Quantum divide and conquer 


which solves to , provided 

→ ak(n) ≤ O(n2/3 logk−1 n) + m2 ⋅ O(n2/3) + 2m − 1 ak(n/m)

ak(n) = O(n2/3 logk−1 n) logm( 2m − 1) < 2/3 ⟺ m ≥ 7

Theorem. Let adversary quantity for -CS on input length . Then ak(n) = k n ak(n) = O(n2/3 logk−1 n)



New speedups from old
Search. Find a marked item from list of items  given oracle access to , find  such that 
↔ x ∈ {0,1}n i xi = 1

Ox | i ⟩ |0 ⟩ = | i ⟩ |xi ⟩

Upper bound: uses a variable-time algorithm [Ambainis 12]

Lower bound: uses modified adversary method [Ambainis 00]

Multi-armed bandit 
exploration problem

Question. What if the items can be partially marked and the goal is to find the most heavily marked item? 
 given oracle access to , find  such that  is maximal
↔ p ∈ [0,1]n i pi

Op | i ⟩ |0 ⟩ = | i ⟩( pi |1 ⟩ + 1 − pi |0 ⟩)
Theorem [WYLC 21].


Let , where  is the th largest element of  (assume ), then the largest 

 can be identified using  calls to  

H = ∑n
k=2 (q1 − qk)−2 qk k {pi}i q1 > q2

pi Θ( H) Op



Real-world applications?

Example. Finding the best move in chess


You have  candidate moves, where move  can lead to a set  of possible subsequent games


• Assume you have computer code that, for move  and game , computes  if you win 
and  if you lose


• We can instantiate one call to  using one call to : 

 

where  and  are some junk states and  equals the empirical probability that move  leads to 
your win (our algorithm also works when  involves junk states)

n i X(i)

i g ∈ X(i) f(i, g) = 1
= 0

Op f

| i ⟩ |0 ⟩ |0 ⟩ ↦ | i ⟩ |0 ⟩
1

|X(i) | ∑
g∈X(i)

|g ⟩
f

↦ | i ⟩ ∑
g∈X(i)

1
|X(i) |

| f(i, g) ⟩ |g ⟩ = | i ⟩( pi |1 ⟩ |ui ⟩ + 1 − pi |0 ⟩ |vi ⟩)

|ui ⟩ |vi ⟩ pi i
Op

Equivalently, can we instantiate the oracle in the real world? Yes!



Conclusion
1. Structure: showed how symmetry relates to quantum speedups, in particular, graph symmetries


2. Design: described a framework for divide and conquer in the quantum setting


3. Application: to multi-armed bandits by generalizing Grover’s speedup for search

Open question: is there a useful problem with a massive quantum speedup?



Appendix: adversary quantity
For any , 


, 


max over  real symmetric matrices  with  and 





f : Σn → {0,1}

Adv( f ) = max
Γ

∥Γ∥
maxi∈[n] ∥Γi∥

|Σ |n × |Σ |n Γ f(x) = f(y) ⟹ Γxy = 0

(Γi)xy
= {

Γxy if xi ≠ yi

0 if xi = yi


