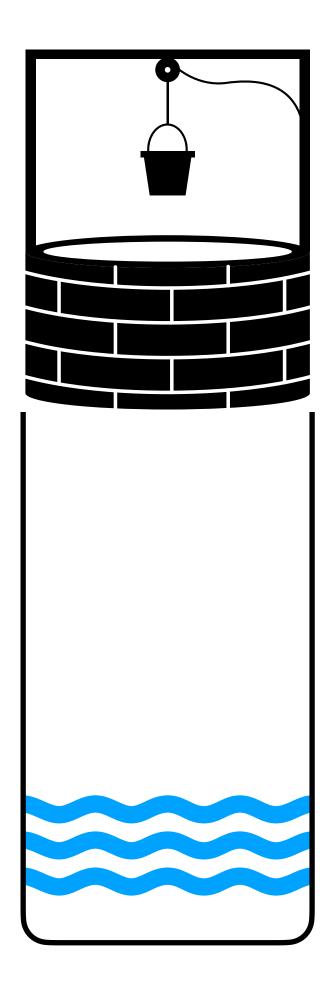
Quantum speedups Structure, design, and application

Daochen Wang

Advisors: Dr. Andrew Childs and Dr. Carl Miller

r



Application

Quantum exploration algorithms for multi-armed bandits **[W**YLC, AAAI 21]

Design

Quantum divide and conquer [CKKS**W**, QIP 23]

Structure

Symmetries, graph properties, and quantum speedups [BCGKPW, FOCS 20 & QIP 21]

Quantum algorithms for reinforcement learning with a generative model [WSKKR, ICML 21]

Lattice-based quantum advantage from rotated measurements [AMM**W**, 22]

Efficient quantum measurement of Pauli operators in the presence of finite sampling error [CvSWPCB, Quantum 21]

Parallel self-testing of EPR pairs under computational assumptions [FWZ, 23]

Possibilistic simulation of quantum circuits by classical circuits [**W**, PRA 22]

A theory of quantum differential equation solvers: limitations and fast-forwarding [AL**W**Z, 23]

Quantum exploration algorithms for multi-armed bandits [WYLC, AAAI 21]

Quantum divide and conquer [CKKS**W**, QIP 23]

Symmetries, graph properties, and quantum speedups [BCGKPW, FOCS 20 & QIP 21]

Query complexity

probability $\geq 2/3$ for all $x \in E$

How many queries to (the oracle encoding) input x does *A* need to make?

Answer denoted D(f), R(f), and Q(f), when \mathscr{A} is deterministic, randomized, and quantum, respectively

Quantum speedup $\iff Q(f) < R(f)$

Let $f: E \subseteq \Sigma^n \to \{0,1\}$, suppose an algorithm \mathscr{A} computes f(x) correctly with

Classical query $i \mapsto x_i$ Quantum query $|i\rangle |a\rangle \mapsto |i\rangle |a+x_i\rangle$

Problem structure

Grover OR: $\{0,1\}^n \to \{0,1\}$

 $OR(x) = x_1 \lor x_2 \lor \ldots \lor x_n$

 $R(OR) = \Theta(n)$ and $Q(OR) = \Theta(\sqrt{n})$

Simon f_{Simon} : $E \subseteq \{1, \dots, n\}^n \rightarrow \{0, 1\}$, *n* is a power of 2

 $x \in E \iff x$ is a permutation of $[n] = \{1, \dots, n\}$ or x has a hidden period $R(f_{\text{Simon}}) = \Theta(\sqrt{n}) \text{ and } Q(f_{\text{Simon}}) = \Theta(\log n)$



Key component of Shor's algorithm

Observations

- Polynomial speedup
- Unstructured

Exponential speedup

Highly structured

Symmetries and graph properties

Let $f: E \subseteq \Sigma^M \to \{0,1\}$ and $G \leq S_M$, we say f is symmetrical under G if

$$x \in E \implies x_{\sigma(1)} \dots x_{\sigma(M)} \in E$$
 a

Observation. Suppose $\Sigma = \{0,1\}$ and $M = C_2^n = n(n-1)/2$, then 1. $\Sigma^M \leftrightarrow$ set of adjacency matrices of (simple) graphs on *n* vertices 2. $f = \text{graph property} \iff f$ symmetrical under $G = \{\text{Permutations induced by } S_n\} \leq S_M$ Graph A $\pi \in S_n$ induces $\{u, v\} \mapsto \{\pi(u), \pi(v)\}$ Graph B

Graph A:
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \leftrightarrow 100111, \text{ Graph B:} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \leftrightarrow 11$$

and $f(x) = f(x_{\sigma(1)}...x_{\sigma(M)})$ for all $\sigma \in G$

Prior work: f symmetrical under $G = S_M \implies R(f) \le O(Q(f)^3)$ [Aaronson, Ambainis 14; Chailloux 18]

Graph properties* \implies polynomial quantum speedup

Suppose $f: E \subseteq \{0,1\}^{n^2} \rightarrow \{0,1\}$ symmetrical under $G = S_n^{(2)} \leq S_{n^2}$ consisting of permutations of $[n^2]$ induced by S_n : $\pi \in S_n$ induces $(u, v) \in [n] \times [n] \cong [n^2] \mapsto (\pi(u), \pi(v))$

Chailloux's lemma (adapted). Suppose it takes at least $\Omega(r^{1/c})$ quantum queries to distinguish a random $\sigma \in G$ from a random range-r function in Func($[n^2], [n^2]$), then $R(f) = O(Q(f)^c)$

Observation. If we can distinguish a random $\sigma \in G$ from a random range- r^2 function in Func($[n^2], [n^2]$) with q quantum queries, then we can distinguish a random $\pi \in S_n$ from a random range-r function in Func([n], [n]) with q quantum queries

Then [Zhandry 15] $\Longrightarrow q = \Omega(r^{1/3}) = \Omega((r^2)^{1/6})$

Conclusion. The hypothesis of Chailloux's lemma holds with c = 6, so $R(f) = O(Q(f)^6)$

*In the adjacency matrix model

Proof extends to *l*-uniform hypergraph properties

Exponential quantum speedup in the adjacency list model

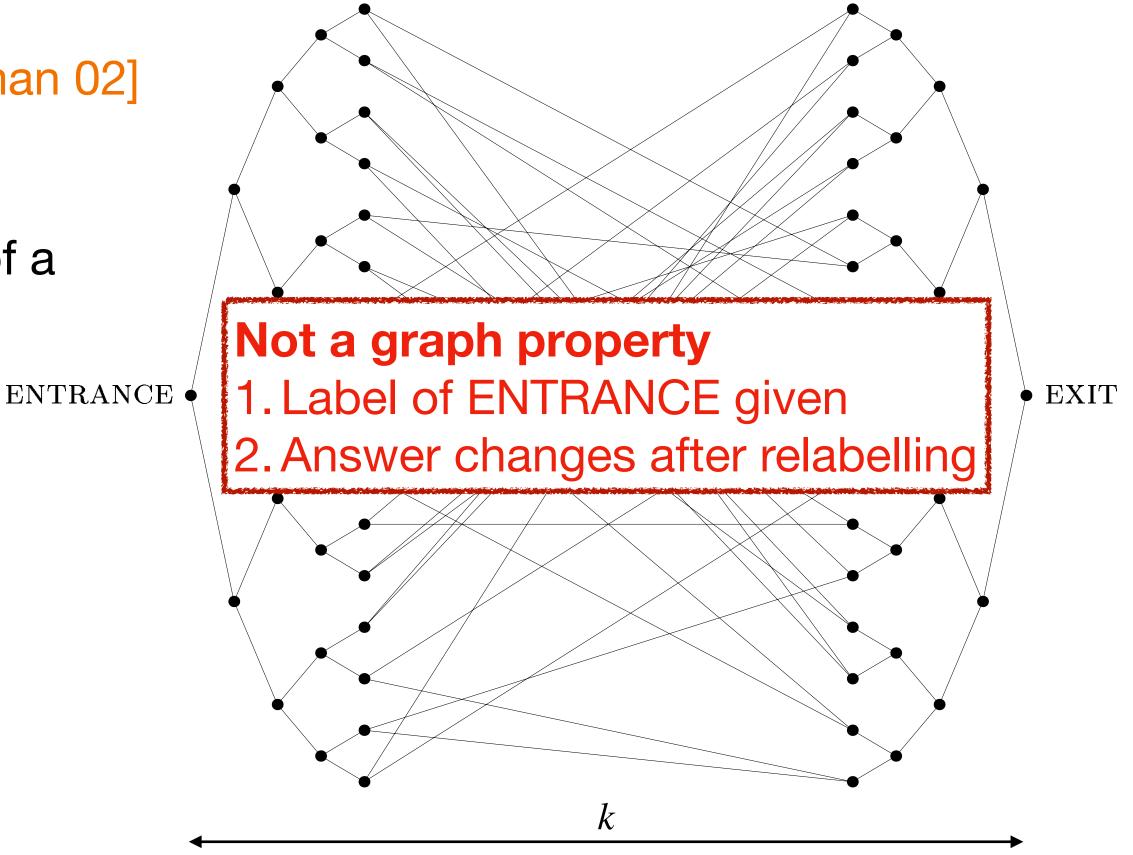
Adjacency list oracle: query by $i \in [n]$, oracle returns the labels of neighbours of vertex labelled i

Glued-trees problem [Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 02]

Find label of EXIT given adjacency list oracle of a glued trees graph and label of its ENTRANCE

Quantum: O(poly(k))

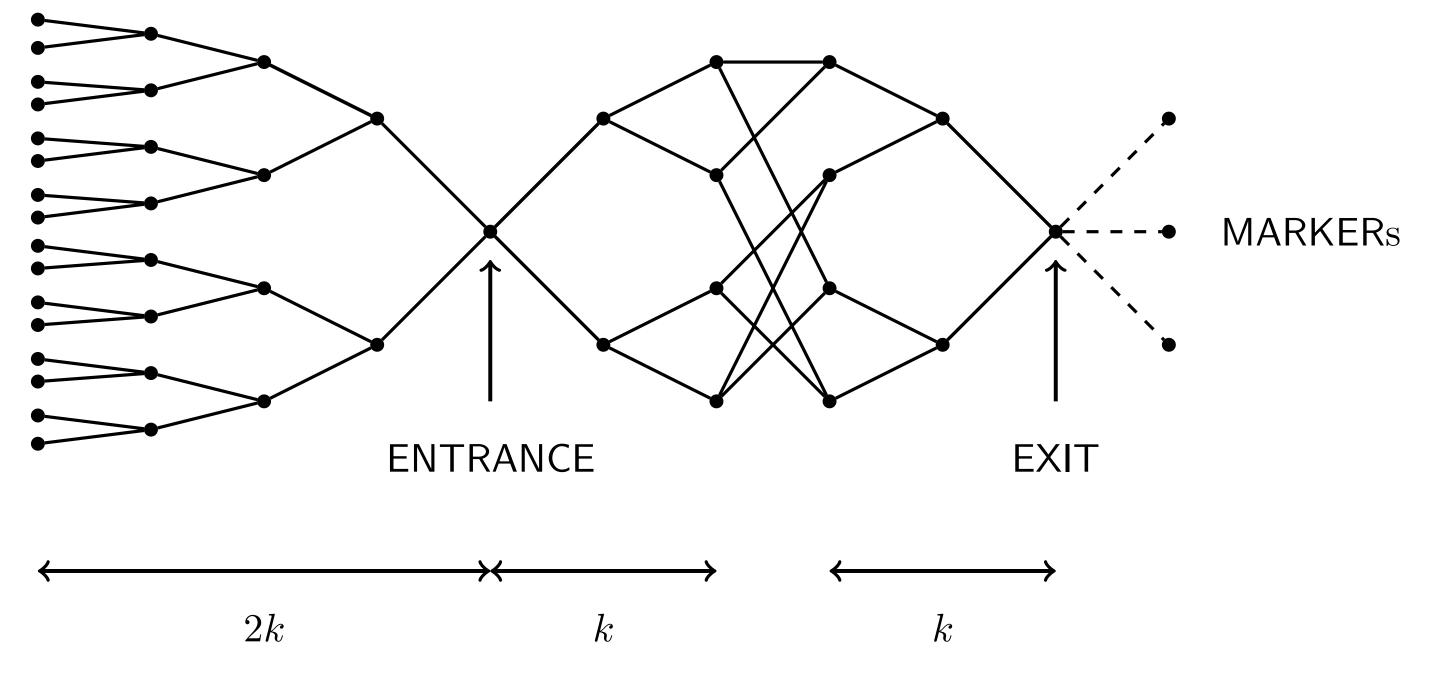
Randomized: $2^{\Omega(k)}$



Upgrade to a graph property

Problem. Decide if the graph has maximum degree 5 or not

POINTERs



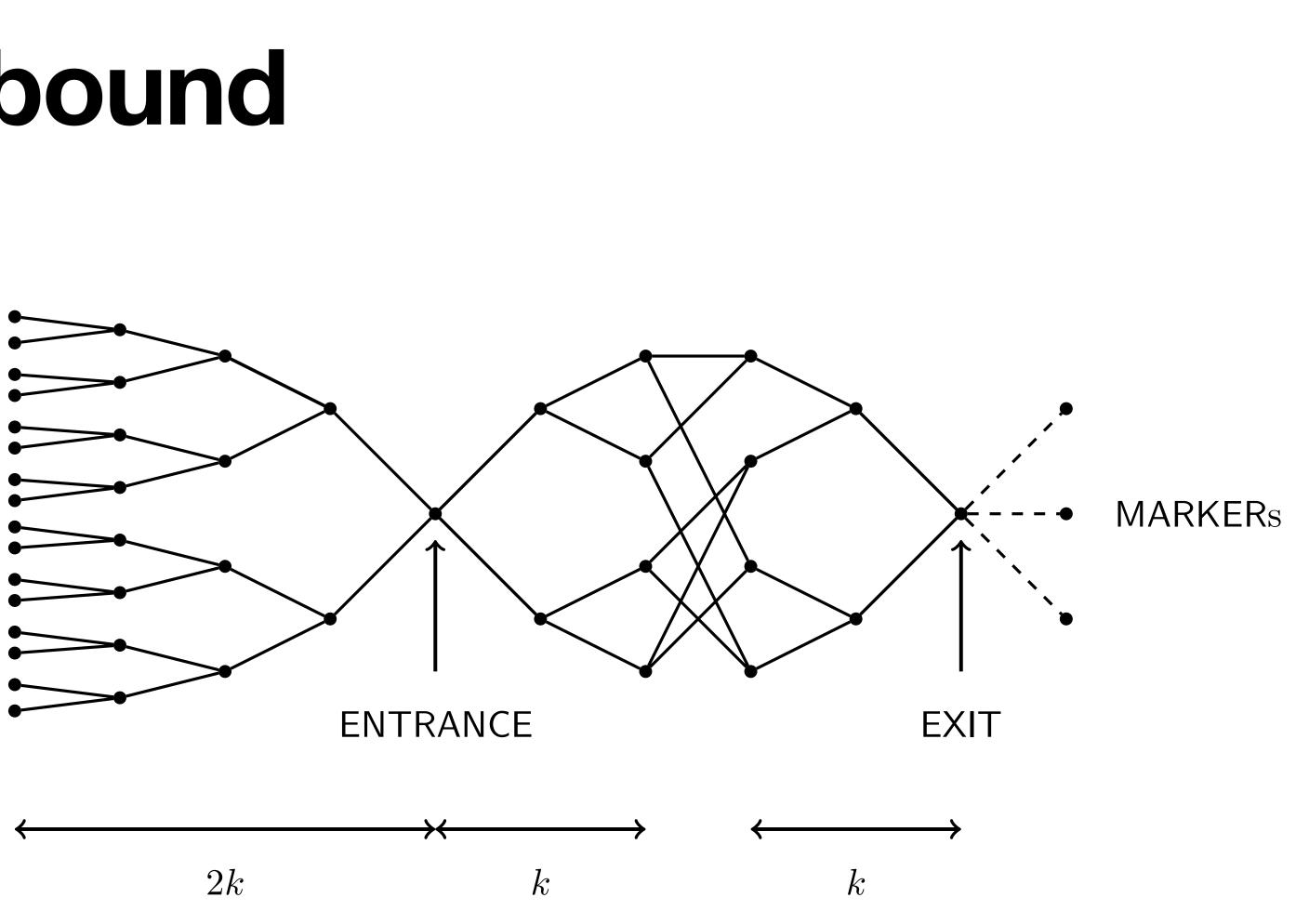
Quantum: O(poly(k))

- 1. Sample random label until hit POINTER
- Classically walk to ENTRANCE 2.
- Run quantum algorithm in 3. [CCDFGS 02] to find EXIT

Classical lower bound

Problem. Decide if the graph has maximum degree 5 or not

POINTERs



Randomized: $2^{\Omega(k)}$

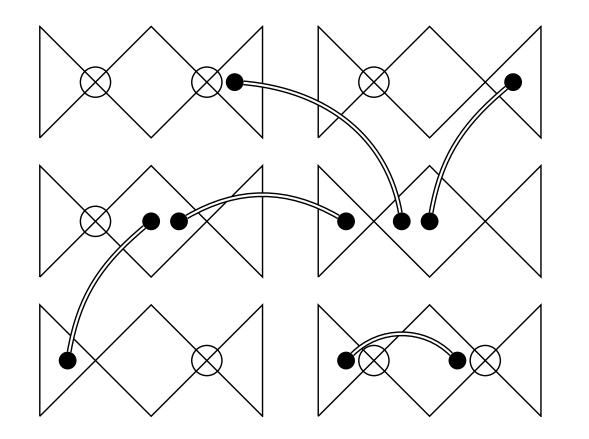
- 1. Can convert any randomized algorithm for solving this problem into one that solves the glued-trees problem
- 2. Result follows from [CCDFGS 02]

Further developments

- Complete characterization of the quantum speedup admitted by functions $f: E \subseteq \Sigma^n \to \{0,1\}$ symmetric under primitive permutation group $G \leq S_n$
 - 1. If G corresponds to *l*-uniform hypergraph symmetries, then $\forall f, R(f) \leq O(Q(f)^{3l})$

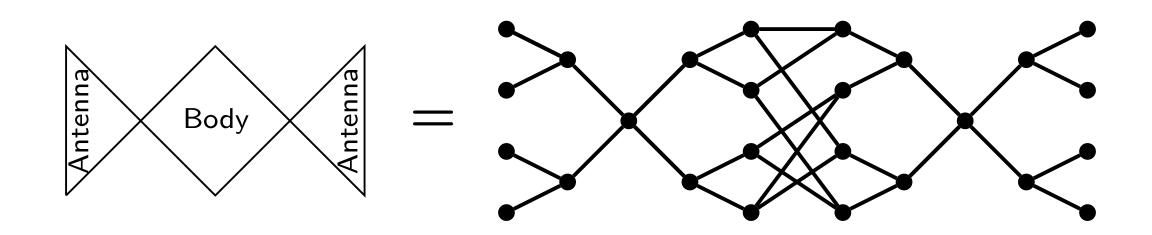
2. Otherwise,
$$\exists f$$
 with $R(f) = \Omega(\sqrt{n})$ and Q

- \rightarrow Near-complete characterization of how quantum speedup relate to symmetry under arbitrary G
- Exponential quantum speedup graph property testing in the adjacency list model



where

 $Q(f) = O(\log n)$



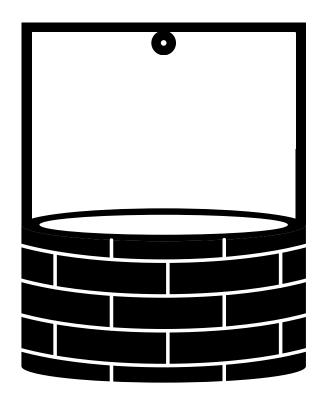
[BCGKP**W** 20]

Quantum algorithm design

- Fourier sampling
- Grover search/amplitude amplification
- •Quantum walk
- •Span programs

. . .

- Adiabatic optimization/QAOA
- Quantum signal processing/QSVT
- Quantum divide and conquer [CKKSW 22]



Applications

- Recognizing regular languages - String rotation and string suffix Longest increasing subsequence - Longest common subsequence

. . .

[Aaronson, Grier, Schaeffer 19] [Akmal, Jin 22] New! New!

Divide and conquer

- 1. Divide a problem into subproblems
- 2. Recursively solve each subproblem
- 3. Combine the solutions of the subproblems to solve the full problem

Merge sort

Recurrence:

Cost of solving auxiliary problem

$$C(n) = 2C(n/2) + O(n)$$

Cost of solving subproblem

	2	7	4	6	5	3	1	8
Γ	2	7	4	6	5	3	1	8
	2	4	6	7	1	3	5	8
	1	2	3	4	5	6	7	8

 $\Rightarrow C(n) = O(n \log n)$

Quantum divide and conquer

Every $f: \Sigma^n \to \{0,1\}$ can be associated with its adversary quantity, $Adv(f) \ge 0$

Theorem [Høyer, Lee, Špalek 07; Lee, Mittal, Reichardt, Špalek 10]. $Q(f) = \Theta(\text{Adv}(f))$

- AND-OR. Suppose f is computed as $f_1 \square f_2 \square \dots \square f_a \square f_{aux}$, where each $\square \in \{ \land, \lor \}$ $\operatorname{Adv}(f)^2 \leq \sum_{i=1}^{n} \operatorname{Adv}(f_i)^2 + O(Q(f_{aux})^2)$
- SWITCH-CASE. Suppose f is computed by first computing $s = f_{aux}(x)$ and then some function $g_s(x)$, then

$$\operatorname{Adv}(f) \le \max_{s} \operatorname{Adv}(g_{s}) + O(Q(f_{aux}))$$

 \rightarrow Divide and conquer recurrences in the quantum setting

Recognizing regular languages

Let $\Sigma = \{0, 1, 2\}, f_n \colon \Sigma^n \to \{0, 1\}$ such that $f_n(x) = 1$ iff $x \in \Sigma^* 20^* 2\Sigma^*$ 02002110 🔽

Observation. Let $g_n(x) = (x_{\text{left}} \in \Sigma^* 20^*)$ $f_n(x) = f_{n/2}(x_{\text{left}})$

Let $a(n) = \operatorname{Adv}(f_n)$, then $a(n)^2 \le 2a^2(n/2)$ But $Q(g_n) = O(\sqrt{n})$, so $a(n) = O(\sqrt{n \log n})$

02102112

$$\wedge (x_{\text{right}} \in 0^* 2\Sigma^*), \text{ then}$$
$$) \vee f_{n/2}(x_{\text{right}}) \vee g_n(x)$$
$$2) + O(Q(g_n)^2)$$

Longest common subsequence

k-common subsequence (*k*-CS). Given $x, y \in \Sigma^n$, do x and y share a subsequence of length k?

E i n s t e i n $k \leq 4 \nabla$ Entwined $k > 4 \bigcirc$

- •R(k-CS) = $\Theta(n)$ for $k \ge 1$
- $Q(1-CS) = \Theta(n^{2/3})$ \leftarrow bipartite element distinctness [Aaronson, Shi 04; Ambainis 03] • $Q(k-CS) = O(n^{2k/(2k+1)}) \leftarrow \text{using [Ambainis 03]}$

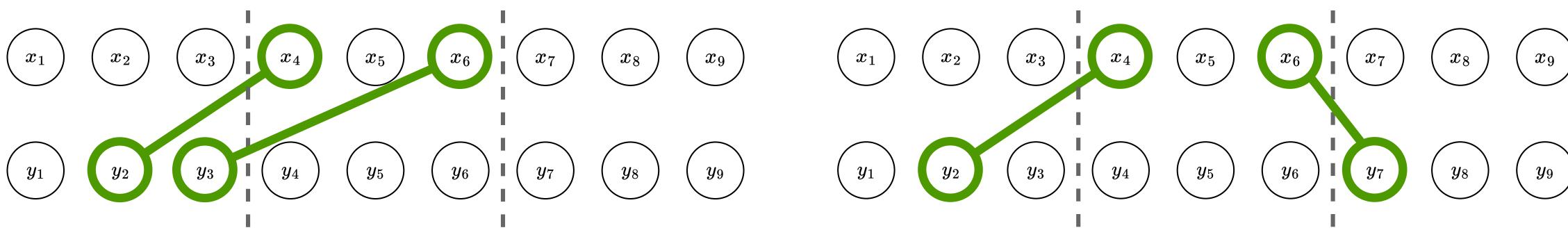
Can we do better?

Simple and composite k-CS

Divide the two input strings x and y into m parts each. Then, a k-CS can either be simple or composite • A simple k-CS is a k-CS formed by symbols within a single part of x and a single part of y

- A composite k-CS is any k-CS that is not simple

Simple



Theorem. Let $a_k(n) = adversary$ quantity for k-CS on input length n. Then $a_k(n) = O(n^{2/3} \log^{k-1} n)$

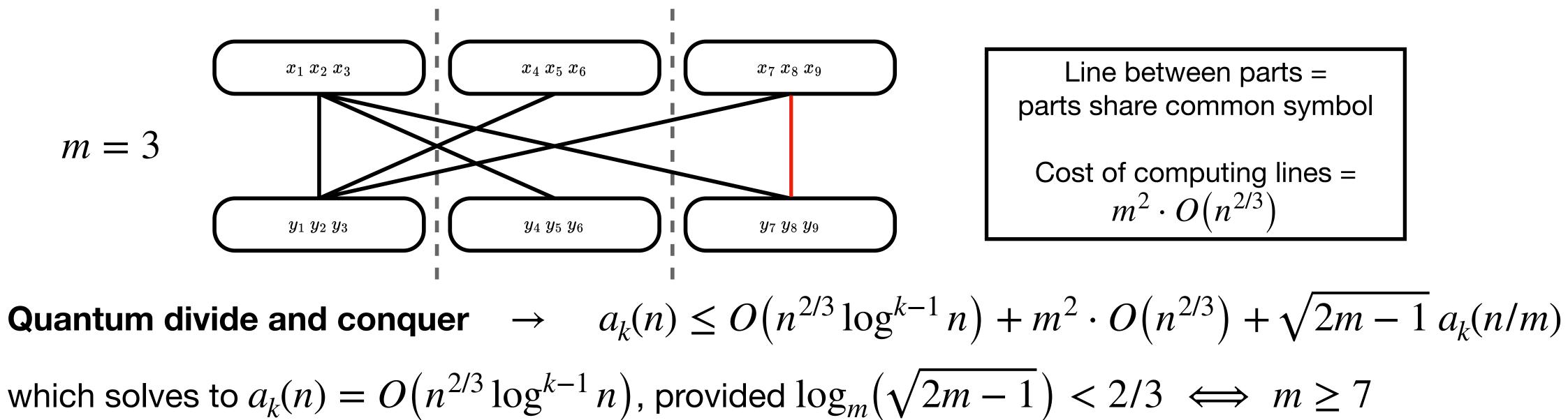
k = 2, m = 3Composite

Quantum divide and conquer on k-CS

Theorem. Let $a_k(n) = adversary$ quantity for k-CS on input length n. Then $a_k(n) = O(n^{2/3} \log^{k-1} n)$

Observations.

- Detecting composite k-CS takes $O(n^{2/3} \log^{k-1} n)$ using inductive hypothesis and binary search
- Need to detect if there exists a simple k-CS between $\leq 2m 1$ pairs of length-(n/m) substrings



New speedups from old

 $O_{x}|i\rangle|$

 \leftrightarrow given oracle access to $p \in [0,1]^n$, find *i* such that p_i is maximal

$$O_p |i\rangle |0\rangle = |i\rangle ($$

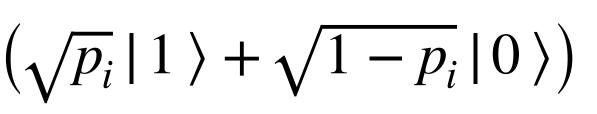
Theorem [WYLC 21].

Let $H = \sum_{k=2}^{n} (q_1 - q_k)^{-2}$, where q_k is the kth largest element of $\{p_i\}_i$ (assume $q_1 > q_2$), then the largest p_i can be identified using $\Theta(\sqrt{H})$ calls to O_p Upper bound: uses a variable-time algorithm [Ambainis 12]

Search. Find a marked item from list of items \leftrightarrow given oracle access to $x \in \{0,1\}^n$, find i such that $x_i = 1$

$$0 \rangle = |i\rangle |x_i\rangle$$

Question. What if the items can be partially marked and the goal is to find the most heavily marked item?



Multi-armed bandit exploration problem

Lower bound: uses modified adversary method [Ambainis 00]

Real-world applications?

Equivalently, can we instantiate the oracle in the real world? **Yes!**

Example. Finding the best move in chess

- You have n candidate moves, where move i can lead to a set X(i) of possible subsequent games • Assume you have computer code that, for move i and game $g \in X(i)$, computes f(i, g) = 1 if you win and = 0 if you lose
- We can instantiate one call to O_p using one call $|i\rangle|0\rangle|0\rangle \mapsto |i\rangle|0\rangle \frac{1}{\sqrt{|X(i)|}} \sum_{g \in X(i)} |g\rangle \stackrel{f}{\mapsto} |i\rangle \sum_{g \in X(i)} \sum_{g \in X(i)} |g\rangle \stackrel{f}{\mapsto} |i\rangle \sum_{g \in X(i)} |g\rangle \stackrel{f}{\mapsto} |g\rangle \stackrel{f}$

your win (our algorithm also works when O_p involves junk states)

$$\int_{(i)} \frac{1}{\sqrt{|X(i)|}} |f(i,g)\rangle |g\rangle = |i\rangle \left(\sqrt{p_i} |1\rangle |u_i\rangle + \sqrt{1-p_i} |0\rangle |u_i\rangle\right)$$

where $|u_i\rangle$ and $|v_i\rangle$ are some junk states and p_i equals the empirical probability that move *i* leads to

Conclusion

- 1. Structure: showed how symmetry relates to quantum speedups, in particular, graph symmetries
- 2. Design: described a framework for divide and conquer in the quantum setting
- 3. Application: to multi-armed bandits by generalizing Grover's speedup for search

Open question: is there a **useful** problem with a **massive** quantum speedup?

Appendix: adversary quantity

For any $f: \Sigma^n \to \{0,1\}$,

Adv(f) = m

max over $|\Sigma|^n \times |\Sigma|^n$ real symmetric matrices Γ with $f(x) = f(y) \implies \Gamma_{xy} = 0$ and

$$\max_{\Gamma} \frac{\|\Gamma\|}{\max_{i\in[n]}\|\Gamma_i\|},$$

 $\left(\Gamma_{i}\right)_{xy} = \begin{cases} \Gamma_{xy} & \text{if } x_{i} \neq y_{i} \\ 0 & \text{if } x_{i} = y_{i} \end{cases}$

