Quantum speedups

Structure, design, and application

Quantum exploration algorithms for multi-armed bandits

Design
Quantum divide and conquer [CKKSW, QIP 23]

Symmetries, graph properties, and quantum speedups [BCGKPW, FOCS 20 \& QIP 21]

Quantum algorithms for reinforcement learning with a generative model [WSKKR, ICML 21]

Efficient quantum measurement of Pauli operators in the presence of finite sampling error
[CvSWPCB, Quantum 21]

Possibilistic simulation of quantum circuits by classical circuits
[W, PRA 22]

Lattice-based quantum advantage from rotated measurements
[AMMW, 22]

Parallel self-testing of EPR pairs under computational assumptions
[FWZ, 23]

A theory of quantum differential equation solvers: limitations and fast-forwarding [ALWZ, 23]

Quantum exploration algorithms for multi-armed bandits [WYLC, AAAI 21]

Quantum divide and conquer [CKKSW, QIP 23]

Symmetries, graph properties, and quantum speedups
[BCGKPW, FOCS 20 \& QIP 21]

Query complexity

Let $f: E \subseteq \Sigma^{n} \rightarrow\{0,1\}$, suppose an algorithm \mathscr{A} computes $f(x)$ correctly with probability $\geq 2 / 3$ for all $x \in E$

How many queries to (the oracle encoding) input x does \mathscr{A} need to make?

Answer denoted $D(f), R(f)$, and $Q(f)$, when \mathscr{A} is deterministic, randomized, and quantum, respectively

Classical query

$$
i \mapsto x_{i}
$$

Quantum query
$|i\rangle|a\rangle \mapsto|i\rangle\left|a+x_{i}\right\rangle$

Quantum speedup $\Longleftrightarrow Q(f)<R(f)$

Problem structure

Grover OR: $\{0,1\}^{n} \rightarrow\{0,1\}$
$\mathrm{OR}(x)=x_{1} \vee x_{2} \vee \ldots \vee x_{n}$
$R(\mathrm{OR})=\Theta(n)$ and $Q(\mathrm{OR})=\Theta(\sqrt{n})$

Observations

- Polynomial speedup
-Unstructured

Simon $f_{\text {Simon }}: E \subseteq\{1, \ldots, n\}^{n} \rightarrow\{0,1\}, n$ is a power of 2
$x \in E \Longleftrightarrow x$ is a permutation of $[n]=\{1, \ldots, n\}$ or x has a hidden period

- Exponential speedup
- Highly structured

Symmetries and graph properties

Let $f: E \subseteq \Sigma^{M} \rightarrow\{0,1\}$ and $G \leq S_{M}$, we say f is symmetrical under G if

$$
x \in E \Longrightarrow x_{\sigma(1)} \ldots x_{\sigma(M)} \in E \quad \text { and } \quad f(x)=f\left(x_{\sigma(1)} \ldots x_{\sigma(M)}\right) \text { for all } \sigma \in G
$$

Prior work: f symmetrical under $G=S_{M} \Longrightarrow R(f) \leq O\left(Q(f)^{3}\right)$ [Aaronson, Ambainis 14; Chailloux 18]

Observation. Suppose $\Sigma=\{0,1\}$ and $M=C_{2}^{n}=n(n-1) / 2$, then

1. $\Sigma^{M} \leftrightarrow$ set of adjacency matrices of (simple) graphs on n vertices
2. $f=$ graph property $\Longleftrightarrow f$ symmetrical under $G=\left\{\right.$ Permutations induced by $\left.S_{n}\right\} \leq S_{M}$

Graph A: $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right) \leftrightarrow 100111$, Graph B: $\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \leftrightarrow 110101$

$$
\begin{gathered}
\pi \in S_{n} \text { induces }\{u, v\} \mapsto\{\pi(u), \pi(v)\} \\
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) \text { induces }\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 5 & 2 & 4 & 1
\end{array}\right)
\end{gathered}
$$

Graph properties* \Longrightarrow polynomial quantum speedup

Suppose $f: E \subseteq\{0,1\}^{n^{2}} \rightarrow\{0,1\}$ symmetrical under $G=S_{n}^{(2)} \leq S_{n^{2}}$ consisting of permutations of $\left[n^{2}\right]$ induced by $S_{n}: \quad \pi \in S_{n}$ induces $(u, v) \in[n] \times[n] \cong\left[n^{2}\right] \mapsto(\pi(u), \pi(v))$

Chailloux's lemma (adapted). Suppose it takes at least $\Omega\left(r^{1 / c}\right)$ quantum queries to distinguish a random $\sigma \in G$ from a random range- r function in $\operatorname{Func}\left(\left[n^{2}\right],\left[n^{2}\right]\right)$, then $R(f)=O\left(Q(f)^{c}\right)$

Observation. If we can distinguish a random $\sigma \in G$ from a random range- r^{2} function in Func $\left(\left[n^{2}\right],\left[n^{2}\right]\right)$ with q quantum queries, then we can distinguish a random $\pi \in S_{n}$ from a random range- r function in Func $([n],[n])$ with q quantum queries

Then [Zhandry 15] $\Longrightarrow q=\Omega\left(r^{1 / 3}\right)=\Omega\left(\left(r^{2}\right)^{1 / 6}\right)$

Proof extends to l-uniform
hypergraph properties

Conclusion. The hypothesis of Chailloux's lemma holds with $c=6$, so $R(f)=O\left(Q(f)^{6}\right)$
*In the adjacency matrix model

Exponential quantum speedup in the adjacency list model

Adjacency list oracle: query by $i \in[n]$, oracle returns the labels of neighbours of vertex labelled i

Glued-trees problem

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 02]

Find label of EXIT given adjacency list oracle of a glued trees graph and label of its ENTRANCE

Upgrade to a graph property

Problem. Decide if the graph has maximum degree 5 or not

Quantum: $O(\operatorname{poly}(k))$
POINTERs

1. Sample random label until hit POINTER
2. Classically walk to ENTRANCE
3. Run quantum algorithm in [CCDFGS 02] to find EXIT

Classical lower bound

Problem. Decide if the graph has maximum degree 5 or not

Randomized: $2^{\Omega(k)}$
POINTERs

1. Can convert any randomized algorithm for solving this problem into one that solves the glued-trees problem

2. Result follows from [CCDFGS 02]

Further developments

- Complete characterization of the quantum speedup admitted by functions $f: E \subseteq \Sigma^{n} \rightarrow\{0,1\}$ symmetric under primitive permutation group $G \leq S_{n}$

1. If G corresponds to l-uniform hypergraph symmetries, then $\forall f, R(f) \leq O\left(Q(f)^{3 l}\right)$
2. Otherwise, $\exists f$ with $R(f)=\Omega(\sqrt{n})$ and $Q(f)=O(\log n)$
\rightarrow Near-complete characterization of how quantum speedup relate to symmetry under arbitrary G

- Exponential quantum speedup graph property testing in the adjacency list model

where

Quantum algorithm design

- Fourier sampling
-Grover search/amplitude amplification
-Quantum walk
- Span programs
- Adiabatic optimization/QAOA
- Quantum signal processing/QSVT
-Quantum divide and conquer [CKKSW 22]

Divide and conquer

1. Divide a problem into subproblems
2. Recursively solve each subproblem
3. Combine the solutions of the subproblems to solve the full problem

Merge sort

2	7	4	6	5	3	1	8

1	2	3	4	5	6	7	8

Quantum divide and conquer

Every $f: \Sigma^{n} \rightarrow\{0,1\}$ can be associated with its adversary quantity, $\operatorname{Adv}(f) \geq 0$
Theorem [Høyer, Lee, Špalek 07; Lee, Mittal, Reichardt, Špalek 10]. $Q(f)=\Theta(\operatorname{Adv}(f))$

- AND-OR. Suppose f is computed as $f_{1} \square f_{2} \square \ldots \square f_{a} \square f_{\text {aux }}$, where each $\square \in\{\wedge, \vee\}$

$$
\operatorname{Adv}(f)^{2} \leq \sum_{i=1}^{a} \operatorname{Adv}\left(f_{i}\right)^{2}+O\left(Q\left(f_{\text {aux }}\right)^{2}\right)
$$

- SWITCH-CASE. Suppose f is computed by first computing $s=f_{\text {aux }}(x)$ and then some function $g_{s}(x)$, then

$$
\operatorname{Adv}(f) \leq \max _{s} \operatorname{Adv}\left(g_{s}\right)+O\left(Q\left(f_{\text {aux }}\right)\right)
$$

\rightarrow Divide and conquer recurrences in the quantum setting

Recognizing regular languages

Let $\Sigma=\{0,1,2\}, f_{n}: \Sigma^{n} \rightarrow\{0,1\}$ such that $f_{n}(x)=1$ iff $x \in \Sigma^{*} 20^{*} 2 \Sigma^{*}$

$$
02002110 \text { V } 02102112 \geqslant
$$

Observation. Let $g_{n}(x)=\left(x_{\text {left }} \in \Sigma^{*} 20^{*}\right) \wedge\left(x_{\text {right }} \in 0^{*} 2 \Sigma^{*}\right)$, then

$$
f_{n}(x)=f_{n / 2}\left(x_{\text {left }}\right) \vee f_{n / 2}\left(x_{\text {right }}\right) \vee g_{n}(x)
$$

Let $a(n)=\operatorname{Adv}\left(f_{n}\right)$, then $a(n)^{2} \leq 2 a^{2}(n / 2)+O\left(Q\left(g_{n}\right)^{2}\right)$
But $Q\left(g_{n}\right)=O(\sqrt{n})$, so $a(n)=O(\sqrt{n \log n})$

Longest common subsequence

\boldsymbol{k}-common subsequence (\boldsymbol{k}-CS). Given $x, y \in \Sigma^{n}$, do x and y share a subsequence of length k ?

- $R(k-\mathrm{CS})=\Theta(n)$ for $k \geq 1$
- $Q(1-\mathrm{CS})=\Theta\left(n^{2 / 3}\right) \quad \leftarrow$ bipartite element distinctness [Aaronson, Shi 04; Ambainis 03]
- $Q(k-\mathrm{CS})=O\left(n^{2 k /(2 k+1)}\right) \quad \leftarrow$ using [Ambainis 03]

Can we do better?

Simple and composite \boldsymbol{k}-CS

Theorem. Let $a_{k}(n)=$ adversary quantity for k-CS on input length n. Then $a_{k}(n)=O\left(n^{2 / 3} \log ^{k-1} n\right)$

Divide the two input strings x and y into m parts each. Then, a k-CS can either be simple or composite

- A simple k-CS is a k-CS formed by symbols within a single part of x and a single part of y
- A composite k-CS is any k-CS that is not simple

Simple

$$
k=2, m=3
$$

Composite

Quantum divide and conquer on \boldsymbol{k}-CS

Theorem. Let $a_{k}(n)=$ adversary quantity for k-CS on input length n. Then $a_{k}(n)=O\left(n^{2 / 3} \log ^{k-1} n\right)$

Observations.

- Detecting composite k-CS takes $O\left(n^{2 / 3} \log ^{k-1} n\right)$ using inductive hypothesis and binary search
- Need to detect if there exists a simple k-CS between $\leq 2 m-1$ pairs of length- (n / m) substrings

Line between parts = parts share common symbol

Cost of computing lines $=$

$$
m^{2} \cdot O\left(n^{2 / 3}\right)
$$

Quantum divide and conquer $\rightarrow \quad a_{k}(n) \leq O\left(n^{2 / 3} \log ^{k-1} n\right)+m^{2} \cdot O\left(n^{2 / 3}\right)+\sqrt{2 m-1} a_{k}(n / m)$
which solves to $a_{k}(n)=O\left(n^{2 / 3} \log ^{k-1} n\right)$, provided $\log _{m}(\sqrt{2 m-1})<2 / 3 \Longleftrightarrow m \geq 7$

New speedups from old

Search. Find a marked item from list of items \leftrightarrow given oracle access to $x \in\{0,1\}^{n}$, find i such that $x_{i}=1$

$$
O_{x}|i\rangle|0\rangle=|i\rangle\left|x_{i}\right\rangle
$$

Question. What if the items can be partially marked and the goal is to find the most heavily marked item?
\leftrightarrow given oracle access to $p \in[0,1]^{n}$, find i such that p_{i} is maximal

$$
O_{p}|i\rangle|0\rangle=|i\rangle\left(\sqrt{p_{i}}|1\rangle+\sqrt{1-p_{i}}|0\rangle\right)
$$

Multi-armed bandit
exploration problem

Theorem [WYLC 21].

Let $H=\sum_{k=2}^{n}\left(q_{1}-q_{k}\right)^{-2}$, where q_{k} is the k th largest element of $\left\{p_{i}\right\}_{i}$ (assume $q_{1}>q_{2}$), then the largest p_{i} can be identified using $\Theta(\sqrt{H})$ calls to $O_{p} \quad$ Upper bound: uses a variable-time algorithm [Ambainis 12]

Real-world applications?

Equivalently, can we instantiate the oracle in the real world? Yes!

Example. Finding the best move in chess
You have n candidate moves, where move i can lead to a set $X(i)$ of possible subsequent games

- Assume you have computer code that, for move i and game $g \in X(i)$, computes $f(i, g)=1$ if you win and $=0$ if you lose
- We can instantiate one call to O_{p} using one call to f :

$$
|i\rangle|0\rangle|0\rangle \mapsto|i\rangle|0\rangle \frac{1}{\sqrt{|X(i)|}} \sum_{g \in X(i)}|g\rangle \stackrel{f}{\mapsto}|i\rangle \sum_{g \in X(i)} \frac{1}{\sqrt{|X(i)|}}|f(i, g)\rangle|g\rangle=|i\rangle\left(\sqrt{p_{i}}|1\rangle\left|u_{i}\right\rangle+\sqrt{1-p_{i}}|0\rangle\left|v_{i}\right\rangle\right)
$$

where $\left|u_{i}\right\rangle$ and $\left|v_{i}\right\rangle$ are some junk states and p_{i} equals the empirical probability that move i leads to your win (our algorithm also works when O_{p} involves junk states)

Conclusion

1. Structure: showed how symmetry relates to quantum speedups, in particular, graph symmetries
2. Design: described a framework for divide and conquer in the quantum setting
3. Application: to multi-armed bandits by generalizing Grover's speedup for search

Open question: is there a useful problem with a massive quantum speedup?

Appendix: adversary quantity

For any $f: \Sigma^{n} \rightarrow\{0,1\}$,

$$
\operatorname{Adv}(f)=\max _{\Gamma} \frac{\|\Gamma\|}{\max _{i \in[n]}\left\|\Gamma_{i}\right\|},
$$

max over $|\Sigma|^{n} \times|\Sigma|^{n}$ real symmetric matrices Γ with $f(x)=f(y) \Longrightarrow \Gamma_{x y}=0$ and

$$
\left(\Gamma_{i}\right)_{x y}= \begin{cases}\Gamma_{x y} & \text { if } x_{i} \neq y_{i} \\ 0 & \text { if } x_{i}=y_{i}\end{cases}
$$

